The joint embedding property and maximal models

被引:8
|
作者
Baldwin, John T. [1 ]
Koerwien, Martin
Souldatos, Ioannis [2 ]
机构
[1] Dept Math Stat & Comp Sci, M-C 249 851 S Morgan, Chicago, IL 60607 USA
[2] Univ Detroit Mercy, Dept Math, 4001 W McNichols, Detroit, MI 48221 USA
基金
奥地利科学基金会;
关键词
Abstract elementary class; Joint embedding; Amalgamation; Maximal models; Hanf number for joint embedding; Characterizable cardinals; CATEGORICITY;
D O I
10.1007/s00153-016-0480-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of a 'pure' Abstract Elementary Class to block trivial counterexamples. We study classes of models of bipartite graphs and show: Main Theorem (cf. Theorem 3.34 and Corollary 3.38): If <lambda(i) : i <= alpha < N-1 > is a strictly increasing sequence of characterizable cardinals (Definition 2.1) whosemodels satisfy JEP(< lambda(0)), there is an L-omega 1,L-omega-sentence psi whose models form a pure AEC and (1) The models of psi satisfy JEP (< lambda(0)), while JEP fails for all larger cardinals and AP fails in all infinite cardinals. (2) There exist 2(lambda i+) non-isomorphic maximal models of psi in lambda(+)(i), for all i <= alpha, but no maximal models in any other cardinality; and (3) psi has arbitrarily large models. In particular this shows the Hanf number for JEP and the Hanf number for maximality for pure AEC with Lowenheim number N-0 are at least beth(omega 1). We show that although AP(kappa) for each kappa implies the full amalgamation property, J EP(kappa) for each kappa does not imply the full joint embedding property. We prove the main combinatorial device of this paper cannot be used to extend the main theorem to a complete sentence.
引用
收藏
页码:545 / 565
页数:21
相关论文
共 50 条
  • [21] The property of maximal eigenvectors of trees
    Gong, Shi-Cai
    Fan, Yi-Zheng
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (01): : 105 - 111
  • [22] Posets with the Maximal Antichain Property
    Bill Sands
    Order, 2010, 27 : 1 - 8
  • [23] Posets with the Maximal Antichain Property
    Sands, Bill
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2010, 27 (01): : 1 - 8
  • [24] The maximal property for finite groups
    Gagola, S
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (04): : 375 - 376
  • [25] PROPERTY OF MAXIMAL TREES IN GRAPHS
    LASVERGNAS, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (20): : 1297 - +
  • [26] Learning a local maximal marginal embedding: Subspace
    Zhao, Cairong
    Liu, Chuancai
    ICIC Express Letters, 2010, 4 (03): : 769 - 774
  • [27] On the Embedding of (k,p)-Arcs is Maximal Arcs
    Tamás Szhonyi
    Designs, Codes and Cryptography, 1999, 18 : 235 - 246
  • [28] FUZZY MAXIMAL MARGINAL EMBEDDING AND ITS APPLICATION
    Zhao, Cairong
    Lai, Zhihui
    Sui, Yue
    Liu, Chuancai
    Jin, Zhong
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 2709 - 2712
  • [29] Numerical semigroups with quasi maximal embedding dimension
    Llena, D.
    Rosales, J. C.
    RICERCHE DI MATEMATICA, 2024, : 731 - 749
  • [30] Densities of maximal embedding dimension numerical semigroups
    Iglesias, Laura
    Margarida Neto, Ana
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (06) : 2730 - 2737