The joint embedding property and maximal models

被引:8
|
作者
Baldwin, John T. [1 ]
Koerwien, Martin
Souldatos, Ioannis [2 ]
机构
[1] Dept Math Stat & Comp Sci, M-C 249 851 S Morgan, Chicago, IL 60607 USA
[2] Univ Detroit Mercy, Dept Math, 4001 W McNichols, Detroit, MI 48221 USA
基金
奥地利科学基金会;
关键词
Abstract elementary class; Joint embedding; Amalgamation; Maximal models; Hanf number for joint embedding; Characterizable cardinals; CATEGORICITY;
D O I
10.1007/s00153-016-0480-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of a 'pure' Abstract Elementary Class to block trivial counterexamples. We study classes of models of bipartite graphs and show: Main Theorem (cf. Theorem 3.34 and Corollary 3.38): If <lambda(i) : i <= alpha < N-1 > is a strictly increasing sequence of characterizable cardinals (Definition 2.1) whosemodels satisfy JEP(< lambda(0)), there is an L-omega 1,L-omega-sentence psi whose models form a pure AEC and (1) The models of psi satisfy JEP (< lambda(0)), while JEP fails for all larger cardinals and AP fails in all infinite cardinals. (2) There exist 2(lambda i+) non-isomorphic maximal models of psi in lambda(+)(i), for all i <= alpha, but no maximal models in any other cardinality; and (3) psi has arbitrarily large models. In particular this shows the Hanf number for JEP and the Hanf number for maximality for pure AEC with Lowenheim number N-0 are at least beth(omega 1). We show that although AP(kappa) for each kappa implies the full amalgamation property, J EP(kappa) for each kappa does not imply the full joint embedding property. We prove the main combinatorial device of this paper cannot be used to extend the main theorem to a complete sentence.
引用
收藏
页码:545 / 565
页数:21
相关论文
共 50 条
  • [1] The joint embedding property and maximal models
    John T. Baldwin
    Martin Koerwien
    Ioannis Souldatos
    Archive for Mathematical Logic, 2016, 55 : 545 - 565
  • [2] A NOTE ON THE JOINT EMBEDDING PROPERTY IN FRAGMENTS OF ARITHMETIC
    OTERO, M
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1992, 24 : 417 - 423
  • [3] Universal Horn Sentences and the Joint Embedding Property
    Bodirsky M.
    Rydval J.
    Schrottenloher A.
    Discrete Mathematics and Theoretical Computer Science, 2022, 23 (02):
  • [4] THE JOINT EMBEDDING PROPERTY IN NORMAL OPEN INDUCTION
    OTERO, M
    ANNALS OF PURE AND APPLIED LOGIC, 1993, 60 (03) : 275 - 290
  • [5] Universal Horn Sentences and the Joint Embedding Property
    Bodirsky, Manuel
    Rydval, Jakub
    Schrottenloher, Andre
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 23 (02):
  • [6] Elementary Amalgamation and Joint Embedding Property for Intermediate Logics
    Bagheri, Seyed Mohammad
    Pourmahdian, Massoud
    LOGIC JOURNAL OF THE IGPL, 2008, 16 (06) : 561 - 583
  • [7] Maximal Similarity Embedding
    Feng, Lin
    Liu, Sheng-lan
    Wu, Zhen-yu
    Jin, Bo
    NEUROCOMPUTING, 2013, 99 : 423 - 438
  • [8] EMBEDDING PROPERTY
    SABBAGH, G
    MATHEMATISCHE ZEITSCHRIFT, 1971, 121 (03) : 239 - &
  • [9] CoTE: A Flexible Method for Joint Learning of Topic and Embedding Models
    Zhao, Bo
    Yuan, Chunfeng
    Huang, Yihua
    WEB AND BIG DATA, PT IV, APWEB-WAIM 2023, 2024, 14334 : 406 - 421
  • [10] EMBEDDING MAXIMAL CLIQUES OF SETS IN MAXIMAL CLIQUES OF BIGGER SETS
    DRAKE, DA
    DISCRETE MATHEMATICS, 1986, 58 (03) : 229 - 242