Impact of filtering on nanotopography measurement of 300mm silicon wafers

被引:5
|
作者
Riedel, F [1 ]
Gerber, HA [1 ]
Wagner, P [1 ]
机构
[1] Wacker Siltron AG, Burghausen, Germany
关键词
nanotopography; flatness measurement;
D O I
10.1016/S1369-8001(02)00126-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The term nanotopography (NT) is used in semiconductor industry for the non-planar flatness deviation of a silicon wafer front-surface within the spatial wavelength range from about 0.2 to 20 mm. Therefore, long-wavelength contributions to a wafer height map are eliminated by high-pass filtering when extracting the NT. The settings of this filter used for NT measurement evaluation may significantly influence the results reported. Height maps of wafers of different NT conditions recorded with an interferometric tool are processed with different filter settings in an experiment with factorial design in order to assess their influence and range of variation. Filter type, filter cut-off wavelength, data extrapolation at the wafer edge, NT metric, and area threshold are varied at two levels each. Filter type, cut-off wavelength, and data extrapolation turn out to significantly affect NT measurement results. These three factors also are subject to strong interactions. Wafers with excellent NT show little dependence on filtering scheme. A double Gaussian filter with constant 20 mm cut-off wavelength appears to be preferable for providing accurate NT height maps. Application of Deviation metric for threshold height analysis allows the correct localization of peaks and valleys in the map and determining "defective" areas on a wafer. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:465 / 472
页数:8
相关论文
共 50 条
  • [41] φ300mm Cassegrainian telescope
    He, Yewen
    Lu, Weizhong
    Guangxue Jishu/Optical Technique, 1994, (04): : 28 - 30
  • [42] Wet processing at 300mm
    Kraaijveld, J.R.
    Oyrer, H.
    European Semiconductor Design Production Assembly, 2001, 23 (03): : 31 - 34
  • [43] 走向300mm之路
    Robert Haavind
    电子产品世界, 2000, (11) : 34 - 34
  • [44] Proximity gettering process for 300-mm silicon wafers
    Lee, GS
    Park, JG
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2004, 5 (03): : 251 - 255
  • [45] Characterization of 300 mm silicon-polished and EPI wafers
    International 300 Mm Initiate, 2706 Montopolis Drive, Austin, TX 78741, United States
    不详
    Microelectron Eng, 2 (169-182):
  • [46] Characterization of 300 mm silicon-polished and EPI wafers
    Shih, S
    Au, C
    Yang, Z
    Messina, T
    Goodall, RK
    Huff, HR
    MICROELECTRONIC ENGINEERING, 1999, 45 (2-3) : 169 - 182
  • [47] Cost-effective challenges of 300 mm silicon wafers
    Highfill, Jim
    Brunkhorst, Steve
    Gentry, Carl
    Solid State Technology, 2000, 43 (10 SUPPL.)
  • [48] In the age of 300mm silicon, tech standards are even more crucial
    Gehman, BL
    SOLID STATE TECHNOLOGY, 2001, 44 (08) : 128 - +
  • [49] First Monolithic Integration of 3D Complementary FET (CFET) on 300mm Wafers
    Subramanian, S.
    Hosseini, M.
    Chiarella, T.
    Sarkar, S.
    Schuddinck, P.
    Chan, B. T.
    Radisic, D.
    Mannaert, G.
    Hikavyy, A.
    Rosseel, E.
    Sebaai, F.
    Peter, A.
    Hopf, T.
    Morin, P.
    Wang, S.
    Devriendt, K.
    Batuk, D.
    Martinez, G. T.
    Veloso, A.
    Litta, E. Dentoni
    Baudot, S.
    Siew, Y. K.
    Zhou, X.
    Briggs, B.
    Capogreco, E.
    Hung, J.
    Koret, R.
    Spessot, A.
    Ryckaert, J.
    Demuynck, S.
    Horiguchi, N.
    Boemmels, J.
    2020 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, 2020,
  • [50] Processing of graphene on 300mm Si wafers in a state-of-the-art CMOS fabrication facility
    Kaushik, V.
    Agbodo, N.
    Chung, H.
    Hatzistergos, M.
    Ji, B.
    Khare, R.
    Laursen, T.
    Lovell, D.
    Mesfin, A.
    Murray, T.
    Novak, S.
    Stamper, H.
    Steinke, D.
    Vivekanand, S.
    Vo, T.
    Passaro, M.
    Liehr, M.
    SOLID STATE TECHNOLOGY, 2015, 58 (01) : 23 - 27