Euclidean quantum gravity in light of spectral geometry

被引:0
|
作者
Esposito, G [1 ]
机构
[1] Univ Naples Federico II, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
关键词
global analysis; quantum field theory;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A proper understanding of boundary-value problems is essential in the attempt of developing a quantum theory of gravity and of the birth of the universe. The present paper reviews these topics in light of recent developments in spectral geometry, i.e. heat-kernel asymptotics for the Laplacian in the presence of Dirichlet, or Robin, or mixed boundary conditions; completely gauge-invariant boundary conditions in Euclidean quantum gravity; local vs. non-local boundary-value problems in one-loop Euclidean quantum theory via path integrals.
引用
收藏
页码:23 / 42
页数:20
相关论文
共 50 条
  • [41] Spectral geometry for quantum spacetime
    Lizzi, Fedele
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2015, 38 (05):
  • [42] First-order action and Euclidean quantum gravity
    Liko, Tomas
    Sloan, David
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (14)
  • [43] Role of a ''local'' cosmological constant in Euclidean quantum gravity
    Modanese, G
    PHYSICAL REVIEW D, 1996, 54 (08): : 5002 - 5009
  • [44] EXOTIC SMOOTHNESS IN FOUR DIMENSIONS AND EUCLIDEAN QUANTUM GRAVITY
    Duston, Christopher L.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (03) : 459 - 484
  • [45] ENTROPIC FORCE AND ITS FLUCTUATION IN EUCLIDEAN QUANTUM GRAVITY
    Zhao, Yue
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (09): : 1639 - 1650
  • [46] Fermions, loop quantum gravity and geometry
    Chakravarty, Nabajit
    Mullick, Lipika
    Bandyopadhyay, Pratul
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (11):
  • [47] Geometry of loop quantum gravity on a graph
    Rovelli, Carlo
    Speziale, Simone
    PHYSICAL REVIEW D, 2010, 82 (04)
  • [48] New quantum LDPC codes based on Euclidean Geometry
    Feng, Ya'nan
    Tang, Chuchen
    Bai, Chenming
    LASER PHYSICS, 2024, 34 (06)
  • [49] Quantized Kahler Geometry and Quantum Gravity
    Lee, Jungjai
    Yang, Hyun Seok
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 72 (12) : 1421 - 1441
  • [50] Necessity of quantizable geometry for quantum gravity
    Mehta, A. K.
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (13)