We show that the on-shell path integral for asymptotically flat Euclidean spacetimes can be given in the first-order formulation of general relativity, without assuming the boundary to be isometrically embedded in Euclidean space and without adding infinite counter-terms. For illustrative examples of our approach, we evaluate the first-order action for the four-dimensional Euclidean Schwarzschild and NUT-charged spacetimes to derive the corresponding on-shell partition functions, and show that the correct thermodynamic quantities for the solutions are reproduced.
机构:
Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, SP, BrazilUniv Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, SP, Brazil
Brandt, F. T.
Frenkel, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, SP, BrazilUniv Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, SP, Brazil
Frenkel, J.
Martins-Filho, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, SP, BrazilUniv Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, SP, Brazil
Martins-Filho, S.
McKeon, D. G. C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
Algoma Univ, Dept Math & Comp Sci, Sault Ste Marie, ON P6A 2G4, CanadaUniv Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, SP, Brazil