Packing edges in random regular graphs

被引:0
|
作者
Beis, M [1 ]
Duckworth, W
Zito, M
机构
[1] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
[2] Univ Liverpool, Dept Comp Sci, Liverpool L69 7ZF, Merseyside, England
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A k-separated matching in a graph is a set of edges at distance at least k from one another (hence, for instance, a 1-separated matching is just a matching in the classical sense). We consider the problem of approximating the solution to the maximum k-separated matching problem in random r-regular graphs for each fixed integer k and each fixed r greater than or equal to 3. We prove both constructive lower bounds and combinatorial upper bounds on the size of the optimal solutions.
引用
收藏
页码:118 / 130
页数:13
相关论文
共 50 条
  • [41] A combinatorial algorithm to optimally colour the edges of the graphs that are join of regular graphs
    De Simone, Caterina
    Galluccio, Anna
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2008, 5165 : 351 - 360
  • [42] Sandwiching dense random regular graphs between binomial random graphs
    Pu Gao
    Mikhail Isaev
    Brendan D. McKay
    Probability Theory and Related Fields, 2022, 184 : 115 - 158
  • [43] Sandwiching dense random regular graphs between binomial random graphs
    Gao, Pu
    Isaev, Mikhail
    McKay, Brendan D.
    PROBABILITY THEORY AND RELATED FIELDS, 2022, 184 (1-2) : 115 - 158
  • [44] Decomposing Random Graphs into Few Cycles and Edges
    Korandi, Daniel
    Krivelevich, Michael
    Sudakov, Benny
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (06): : 857 - 872
  • [45] On the significance of edges for connectivity in uncertain random graphs
    Li, Hao
    Gao, Xin
    SOFT COMPUTING, 2021, 25 (14) : 8989 - 8997
  • [46] Models for random graphs with variable strength edges
    Wyld, A.
    Rodgers, G. J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 374 (01) : 491 - 500
  • [47] On the significance of edges for connectivity in uncertain random graphs
    Hao Li
    Xin Gao
    Soft Computing, 2021, 25 : 8989 - 8997
  • [48] THE NUMBER OF MATCHINGS IN RANDOM REGULAR GRAPHS AND BIPARTITE GRAPHS
    BOLLOBAS, B
    MCKAY, BD
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (01) : 80 - 91
  • [49] Distribution of subgraphs of random regular graphs
    Gao, Zhicheng
    Wormald, N. C.
    RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (01) : 38 - 48
  • [50] Random walks on regular and irregular graphs
    Coppersmith, D
    Feige, U
    Shearer, J
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (02) : 301 - 308