A Fractional-Order Chaotic Circuit Based on Memristor and Its Generalized Projective Synchronization

被引:0
|
作者
Shen, Wenwen [1 ]
Zeng, Zhigang [1 ]
Zou, Fang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan 430074, Hubei, Peoples R China
来源
INTELLIGENT COMPUTING THEORY | 2014年 / 8588卷
关键词
Memristor; Fractional-order; Generalized Projective Synchronization; ROBUST SYNCHRONIZATION; HYPERCHAOTIC SYSTEMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we generalize the integer-order chua circuit model based on memristor into the fractional-order domain. The new fractional-order circuit can generate complex chaotic behavior. Based on the stability theory of fractional-order systems and active control, a controller for the synchronization of two commensurate fractional-order chaotic memristor based circuit is designed. This technique is applied to achieve generalized projective synchronization (GPS) between the fractional-order chaotic circuit. Numerical results demonstrate the effectiveness and feasibility of the proposed control technique.
引用
收藏
页码:838 / 844
页数:7
相关论文
共 50 条
  • [31] Lag projective synchronization of fractional-order delayed chaotic systems
    Zhang, Weiwei
    Cao, Jinde
    Wu, Ranchao
    Alsaadi, Fuad E.
    Alsaedi, Ahmed
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (03): : 1522 - 1534
  • [32] Function projective lag synchronization of fractional-order chaotic systems
    Sha, Wang
    Yu Yong-Guang
    Hu, Wang
    Rahmani, Ahmed
    CHINESE PHYSICS B, 2014, 23 (04)
  • [33] Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    PHYSICS LETTERS A, 2011, 375 (21) : 2099 - 2110
  • [34] Fractional-order simplest memristor-based chaotic circuit with new derivative
    Ruan, Jingya
    Sun, Kehui
    Mou, Jun
    He, Shaobo
    Zhang, Limin
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (01): : 1 - 12
  • [35] Projective synchronization and parameter identification of a fractional-order chaotic system
    Kong De-fu
    Zhao Xiao-shan
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND INTELLIGENT SYSTEMS (ICMEIS 2015), 2015, 26 : 880 - 883
  • [36] Function projective lag synchronization of fractional-order chaotic systems
    王莎
    于永光
    王虎
    Ahmed Rahmani
    Chinese Physics B, 2014, 23 (04) : 175 - 181
  • [37] Projective Synchronization for a Class of Fractional-Order Chaotic Systems with Fractional-Order in the (1, 2) Interval
    Zhou, Ping
    Bai, Rongji
    Zheng, Jiming
    ENTROPY, 2015, 17 (03): : 1123 - 1134
  • [38] Projective synchronization of fractional-order chaotic systems based on sliding mode control
    Liu Ding
    Yan Xiao-Mei
    ACTA PHYSICA SINICA, 2009, 58 (06) : 3747 - 3752
  • [39] Projective synchronization for fractional-order memristor-based neural networks with time delays
    Yajuan Gu
    Yongguang Yu
    Hu Wang
    Neural Computing and Applications, 2019, 31 : 6039 - 6054
  • [40] Projective synchronization for fractional-order memristor-based neural networks with time delays
    Gu, Yajuan
    Yu, Yongguang
    Wang, Hu
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (10): : 6039 - 6054