A Fractional-Order Chaotic Circuit Based on Memristor and Its Generalized Projective Synchronization

被引:0
|
作者
Shen, Wenwen [1 ]
Zeng, Zhigang [1 ]
Zou, Fang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan 430074, Hubei, Peoples R China
来源
INTELLIGENT COMPUTING THEORY | 2014年 / 8588卷
关键词
Memristor; Fractional-order; Generalized Projective Synchronization; ROBUST SYNCHRONIZATION; HYPERCHAOTIC SYSTEMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we generalize the integer-order chua circuit model based on memristor into the fractional-order domain. The new fractional-order circuit can generate complex chaotic behavior. Based on the stability theory of fractional-order systems and active control, a controller for the synchronization of two commensurate fractional-order chaotic memristor based circuit is designed. This technique is applied to achieve generalized projective synchronization (GPS) between the fractional-order chaotic circuit. Numerical results demonstrate the effectiveness and feasibility of the proposed control technique.
引用
收藏
页码:838 / 844
页数:7
相关论文
共 50 条
  • [1] Generalized projective synchronization for fractional-order chaotic systems with different fractional order
    Zhou, Ping
    Ding, Rui
    ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 2106 - +
  • [2] Compound Generalized Function Projective Synchronization for Fractional-Order Chaotic Systems
    Yang, Chunde
    Cai, Hao
    Zhou, Ping
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [3] Modified generalized projective synchronization of fractional-order chaotic Lu systems
    Liu, Jian
    Liu, Shutang
    Yuan, Chunhua
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [4] Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems
    Boulkroune, A.
    Bouzeriba, A.
    Bouden, T.
    NEUROCOMPUTING, 2016, 173 : 606 - 614
  • [5] Modified generalized projective synchronization of fractional-order chaotic Lü systems
    Jian Liu
    Shutang Liu
    Chunhua Yuan
    Advances in Difference Equations, 2013
  • [6] Dynamic Behaviors Analysis of a Chaotic Circuit Based on a Novel Fractional-Order Generalized Memristor
    Yang, Ningning
    Cheng, Shucan
    Wu, Chaojun
    Jia, Rong
    Liu, Chongxin
    COMPLEXITY, 2019, 2019
  • [7] Chaotic system dynamics analysis and synchronization circuit realization of fractional-order memristor
    Jindong Liu
    Zhen Wang
    Mingshu Chen
    Peijun Zhang
    Rui Yang
    Baonan Yang
    The European Physical Journal Special Topics, 2022, 231 : 3095 - 3107
  • [8] Impulsive anti-synchronization control for fractional-order chaotic circuit with memristor
    Fanqi Meng
    Xiaoqin Zeng
    Zuolei Wang
    Indian Journal of Physics, 2019, 93 : 1187 - 1194
  • [9] Chaotic system dynamics analysis and synchronization circuit realization of fractional-order memristor
    Liu, Jindong
    Wang, Zhen
    Chen, Mingshu
    Zhang, Peijun
    Yang, Rui
    Yang, Baonan
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (16-17): : 3095 - 3107
  • [10] Impulsive anti-synchronization control for fractional-order chaotic circuit with memristor
    Meng, F.
    Zeng, X.
    Wang, Z.
    INDIAN JOURNAL OF PHYSICS, 2019, 93 (09) : 1187 - 1194