PROVABILITY LOGICS RELATIVE TO A FIXED EXTENSION OF PEANO ARITHMETIC

被引:3
|
作者
Kurahashi, Taishi [1 ]
机构
[1] Kisarazu Coll, Natl Inst Technol, Dept Nat Sci, 2-11-1 Kiyomidai Higashi, Kisarazu, Chiba 2920041, Japan
关键词
provability logics; provability predicates; the classification theorem; MODAL LOGIC;
D O I
10.1017/jsl.2018.27
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T and U be any consistent theories of arithmetic. If T is computably enumerable, then the provability predicate Pr-tau(x) of T is naturally obtained from each Sigma(1) definition tau(v) of T. The provability logic PL tau(U) of r relative to U is the set of all modal formulas which are provable in U under all arithmetical interpretations where square is interpreted by Pr-tau(x). It was proved by Beklemishev based on the previous studies by Artemov, Visser, and Japaridze that every PL tau(U) coincides with one of the logics DL alpha, D-beta, S-beta and GL(beta)(-), where a and beta are subsets of omega and beta is cofinite. We prove that if U is a computably enumerable consistent extension of Peano Arithmetic and L is one of GL(alpha), D-beta, S-beta, and GL(beta)(-), where a is computably enumerable and beta is cofinite, then there exists a Sigma(l) definition tau(v) of some extension of I Sigma(1) such that PL tau( U) is exactly L.
引用
收藏
页码:1229 / 1246
页数:18
相关论文
共 50 条
  • [31] On Inclusions Between Quantified Provability Logics
    Taishi Kurahashi
    [J]. Studia Logica, 2022, 110 : 165 - 188
  • [32] On Provability Logics with Linearly Ordered Modalities
    Beklemishev, Lev D.
    Fernandez-Duque, David
    Joosten, Joost J.
    [J]. STUDIA LOGICA, 2014, 102 (03) : 541 - 566
  • [33] On Inclusions Between Quantified Provability Logics
    Kurahashi, Taishi
    [J]. STUDIA LOGICA, 2022, 110 (01) : 165 - 188
  • [34] Degrees of Relative Provability
    Cai, Mingzhong
    [J]. NOTRE DAME JOURNAL OF FORMAL LOGIC, 2012, 53 (04) : 479 - 489
  • [35] Interpretability suprema in Peano Arithmetic
    Paula Henk
    Albert Visser
    [J]. Archive for Mathematical Logic, 2017, 56 : 555 - 584
  • [36] ILLUSORY MODELS OF PEANO ARITHMETIC
    Kikuchi, Makoto
    Kurahashi, Taishi
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2016, 81 (03) : 1163 - 1175
  • [37] MEANING AND TRUTH IN PEANO ARITHMETIC
    MAGARI, R
    [J]. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (06): : 902 - 903
  • [38] SATURATED MODELS OF PEANO ARITHMETIC
    PABION, JF
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1982, 47 (03) : 625 - 637
  • [39] INDICATORS AND INCOMPLETENESS OF PEANO ARITHMETIC
    ZBIERSKI, P
    [J]. ACTA CIENTIFICA VENEZOLANA, 1980, 31 (06): : 487 - 495
  • [40] Interpretability over Peano arithmetic
    Strannegard, C
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1999, 64 (04) : 1407 - 1425