PROVABILITY LOGICS RELATIVE TO A FIXED EXTENSION OF PEANO ARITHMETIC

被引:3
|
作者
Kurahashi, Taishi [1 ]
机构
[1] Kisarazu Coll, Natl Inst Technol, Dept Nat Sci, 2-11-1 Kiyomidai Higashi, Kisarazu, Chiba 2920041, Japan
关键词
provability logics; provability predicates; the classification theorem; MODAL LOGIC;
D O I
10.1017/jsl.2018.27
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T and U be any consistent theories of arithmetic. If T is computably enumerable, then the provability predicate Pr-tau(x) of T is naturally obtained from each Sigma(1) definition tau(v) of T. The provability logic PL tau(U) of r relative to U is the set of all modal formulas which are provable in U under all arithmetical interpretations where square is interpreted by Pr-tau(x). It was proved by Beklemishev based on the previous studies by Artemov, Visser, and Japaridze that every PL tau(U) coincides with one of the logics DL alpha, D-beta, S-beta and GL(beta)(-), where a and beta are subsets of omega and beta is cofinite. We prove that if U is a computably enumerable consistent extension of Peano Arithmetic and L is one of GL(alpha), D-beta, S-beta, and GL(beta)(-), where a is computably enumerable and beta is cofinite, then there exists a Sigma(l) definition tau(v) of some extension of I Sigma(1) such that PL tau( U) is exactly L.
引用
收藏
页码:1229 / 1246
页数:18
相关论文
共 50 条
  • [21] SUBTHEORIES OF PEANO ARITHMETIC
    CLOTE, P
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1987, 52 (01) : 297 - 297
  • [22] ON THE PROVABILITY LOGIC OF BOUNDED ARITHMETIC
    BERARDUCCI, A
    VERBRUGGE, R
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 1993, 61 (1-2) : 75 - 93
  • [23] Peano and the Foundations of Arithmetic
    Lolli, Gabriele
    [J]. GIUSEPPE PEANO BETWEEN MATHEMATICS AND LOGIC, 2011, : 47 - 66
  • [24] THE THEORY OF INDUCTIVE REAL-CLOSED FIELDS IS A CONSERVATIVE EXTENSION OF PEANO ARITHMETIC
    CEGIELSKI, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (05): : 239 - 242
  • [25] Properties of intuitionistic provability and preservativity logics
    Iemhoff, Rosalie
    De Jongh, Dick
    Zhou, Chunlai
    [J]. LOGIC JOURNAL OF THE IGPL, 2005, 13 (06) : 615 - 636
  • [26] Rosser Provability and Normal Modal Logics
    Kurahashi, Taishi
    [J]. STUDIA LOGICA, 2020, 108 (03) : 597 - 617
  • [27] On Provability Logics with Linearly Ordered Modalities
    Lev D. Beklemishev
    David Fernández-Duque
    Joost J. Joosten
    [J]. Studia Logica, 2014, 102 : 541 - 566
  • [28] ON MODAL-LOGICS AXIOMATIZING PROVABILITY
    ARTEMOV, SN
    [J]. MATHEMATICS OF THE USSR-IZVESTIYA, 1985, 49 (06): : 401 - 429
  • [29] Rosser Provability and Normal Modal Logics
    Taishi Kurahashi
    [J]. Studia Logica, 2020, 108 : 597 - 617
  • [30] Provability and Interpretability Logics with Restricted Realizations
    Icard, Thomas F.
    Joosten, Joost J.
    [J]. NOTRE DAME JOURNAL OF FORMAL LOGIC, 2012, 53 (02) : 133 - 154