Application of machine learning and artificial intelligence to extend EFIT equilibrium reconstruction

被引:39
|
作者
Lao, L. L. [1 ]
Kruger, S. [2 ]
Akcay, C. [1 ]
Balaprakash, P. [3 ]
Bechtel, T. A. [1 ,4 ]
Howell, E. [2 ]
Koo, J. [3 ]
Leddy, J. [2 ]
Leinhauser, M. [5 ]
Liu, Y. Q. [1 ]
Madireddy, S. [3 ]
McClenaghan, J. [1 ]
Orozco, D. [1 ]
Pankin, A. [6 ]
Schissel, D. [6 ]
Smith, S. [1 ]
Sun, X. [1 ,4 ]
Williams, S. [7 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] TechX, Boulder, CO USA
[3] Argonne Natl Lab, Lemont, IL USA
[4] Oak Ridge Associated Univ, Oak Ridge, TN USA
[5] Univ Delaware, Newark, DE USA
[6] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[7] Lawrence Berkeley Natl Lab, Berkeley, CA USA
关键词
tokamak equilibrium reconstruction; machine learning; artificial intelligence; Gaussian process; model order reduction; neural network; 3D perturbed equilibrium; REVERSED MAGNETIC SHEAR; ENHANCED CONFINEMENT; MHD EQUILIBRIUM; TOKAMAK; DISCHARGES; STABILITY; PLASMAS; MODES;
D O I
10.1088/1361-6587/ac6fff
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent progress in the application of machine learning (ML)/artificial intelligence (AI) algorithms to improve the Equilibrium Fitting (EFIT) code equilibrium reconstruction for fusion data analysis applications is presented. A device-independent portable core equilibrium solver capable of computing or reconstructing equilibrium for different tokamaks has been created to facilitate adaptation of ML/AI algorithms. A large EFIT database comprising of DIII-D magnetic, motional Stark effect, and kinetic reconstruction data has been generated for developments of EFIT model-order-reduction (MOR) surrogate models to reconstruct approximate equilibrium solutions. A neural-network MOR surrogate model has been successfully trained and tested using the magnetically reconstructed datasets with encouraging results. Other progress includes developments of a Gaussian process Bayesian framework that can adapt its many hyperparameters to improve processing of experimental input data and a 3D perturbed equilibrium database from toroidal full magnetohydrodynamic linear response modeling using the Magnetohydrodynamic Resistive Spectrum - Feedback (MARS-F) code for developments of 3D-MOR surrogate models.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Artificial Intelligence and Machine Learning for materials
    Zheng, Yuebing
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2025, 34
  • [42] Machine learning and artificial intelligence in haematology
    Shouval, Roni
    Fein, Joshua A.
    Savani, Bipin
    Mohty, Mohamad
    Nagler, Arnon
    BRITISH JOURNAL OF HAEMATOLOGY, 2021, 192 (02) : 239 - 250
  • [43] Artificial Intelligence and Machine Learning in Cardiology
    Westcott, R. Jeffrey
    Tcheng, James E.
    JACC-CARDIOVASCULAR INTERVENTIONS, 2019, 12 (14) : 1312 - 1314
  • [44] MACHINE LEARNING IN ARTIFICIAL-INTELLIGENCE
    BRATKO, I
    ARTIFICIAL INTELLIGENCE IN ENGINEERING, 1993, 8 (03): : 159 - 164
  • [45] Artificial intelligence and machine learning in haematology
    Sivapalaratnam, Suthesh
    BRITISH JOURNAL OF HAEMATOLOGY, 2019, 185 (02) : 207 - 208
  • [46] Accuracy of EFIT equilibrium reconstruction with internal diagnostic information at JET
    Brix, M.
    Hawkes, N. C.
    Boboc, A.
    Drozdov, V.
    Sharapov, S. E.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [47] Application of artificial intelligence and machine learning techniques to the analysis of dynamic protein sequences
    Kombo, David C.
    LaMarche, Matthew J.
    Konkankit, Chilaluck C.
    Rackovsky, S.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2024, 92 (10) : 1234 - 1241
  • [48] ALEXZA: A Mobile Application For Dyslexics Utilizing Artificial Intelligence And Machine Learning Concepts
    Rajapakse, Sampath
    Polwattage, Dasuni
    Guruge, Umesha
    Jayathilaka, Isuru
    Edirisinghe, Tharindu
    Thelijjagoda, Samantha
    2018 3RD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY RESEARCH (ICITR), 2018,
  • [49] A Guide for the Application of Statistics in Biomedical Studies Concerning Machine Learning and Artificial Intelligence
    Polce, Evan M.
    Kunze, Kyle N.
    ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 2023, 39 (02): : 151 - 158
  • [50] Application of Artificial Intelligence and Machine Learning in Diagnosing Scaphoid Fractures: A Systematic Review
    Orji, Chijioke
    Reghefaoui, Maiss
    Palacios, Michell Susan Saavedra
    Thota, Priyanka
    Peresuodei, Tariladei S.
    Gill, Abhishek
    Hamid, Pousette
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (10)