Application of machine learning and artificial intelligence to extend EFIT equilibrium reconstruction

被引:39
|
作者
Lao, L. L. [1 ]
Kruger, S. [2 ]
Akcay, C. [1 ]
Balaprakash, P. [3 ]
Bechtel, T. A. [1 ,4 ]
Howell, E. [2 ]
Koo, J. [3 ]
Leddy, J. [2 ]
Leinhauser, M. [5 ]
Liu, Y. Q. [1 ]
Madireddy, S. [3 ]
McClenaghan, J. [1 ]
Orozco, D. [1 ]
Pankin, A. [6 ]
Schissel, D. [6 ]
Smith, S. [1 ]
Sun, X. [1 ,4 ]
Williams, S. [7 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] TechX, Boulder, CO USA
[3] Argonne Natl Lab, Lemont, IL USA
[4] Oak Ridge Associated Univ, Oak Ridge, TN USA
[5] Univ Delaware, Newark, DE USA
[6] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[7] Lawrence Berkeley Natl Lab, Berkeley, CA USA
关键词
tokamak equilibrium reconstruction; machine learning; artificial intelligence; Gaussian process; model order reduction; neural network; 3D perturbed equilibrium; REVERSED MAGNETIC SHEAR; ENHANCED CONFINEMENT; MHD EQUILIBRIUM; TOKAMAK; DISCHARGES; STABILITY; PLASMAS; MODES;
D O I
10.1088/1361-6587/ac6fff
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent progress in the application of machine learning (ML)/artificial intelligence (AI) algorithms to improve the Equilibrium Fitting (EFIT) code equilibrium reconstruction for fusion data analysis applications is presented. A device-independent portable core equilibrium solver capable of computing or reconstructing equilibrium for different tokamaks has been created to facilitate adaptation of ML/AI algorithms. A large EFIT database comprising of DIII-D magnetic, motional Stark effect, and kinetic reconstruction data has been generated for developments of EFIT model-order-reduction (MOR) surrogate models to reconstruct approximate equilibrium solutions. A neural-network MOR surrogate model has been successfully trained and tested using the magnetically reconstructed datasets with encouraging results. Other progress includes developments of a Gaussian process Bayesian framework that can adapt its many hyperparameters to improve processing of experimental input data and a 3D perturbed equilibrium database from toroidal full magnetohydrodynamic linear response modeling using the Magnetohydrodynamic Resistive Spectrum - Feedback (MARS-F) code for developments of 3D-MOR surrogate models.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Artificial intelligence and machine learning in intensive care research and clinical application
    Peine, A.
    Lutge, C.
    Poszler, F.
    Celi, L.
    Schoffski, O.
    Marx, G.
    Martin, L.
    ANASTHESIOLOGIE & INTENSIVMEDIZIN, 2020, 61 : 372 - 384
  • [22] Application of Artificial Intelligence and Machine Learning in Computational Toxicology in Aquatic Toxicology
    Banaee, Mahdi
    Zeidi, Amir
    Faggio, Caterina
    POLLUTION, 2024, 10 (01): : 210 - 235
  • [23] Zero Defect Manufacturing of Microsemiconductors - An Application of Machine Learning and Artificial Intelligence
    Huang, Zhengwen
    Angadi, Veerendra C.
    Danishvar, Morad
    Mousavi, Ali
    Li, Maozhen
    2018 5TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2018, : 449 - 454
  • [24] Application of artificial intelligence and machine learning for prediction of oral cancer risk
    Alhazmi, Anwar
    Alhazmi, Yaser
    Makrami, Ali
    Masmali, Amal
    Salawi, Nourah
    Masmali, Khulud
    Patil, Shankargouda
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2021, 50 (05) : 444 - 450
  • [25] Application of Artificial Intelligence and machine learning techniques for landslide susceptibility assessment
    Ospina-Gutierrez, Juan Pablo
    Aristizabal, Edier
    REVISTA MEXICANA DE CIENCIAS GEOLOGICAS, 2021, 38 (01): : 43 - 54
  • [26] Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management
    Milojevic, Nenad
    Redzepagic, Srdjan
    JOURNAL OF CENTRAL BANKING THEORY AND PRACTICE, 2021, 10 (03) : 41 - 57
  • [27] Artificial Intelligence and Machine Learning in Anesthesiology
    Connor, Christopher W.
    ANESTHESIOLOGY, 2019, 131 (06) : 1346 - 1359
  • [28] Trustworthy machine learning and artificial intelligence
    Varshney, Kush R.
    XRDS: Crossroads, 2019, 25 (03): : 26 - 29
  • [29] Artificial Intelligence and Machine Learning in Preeclampsia
    Layton, Anita T.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2025, 45 (02) : 165 - 171
  • [30] Explainable Artificial Intelligence and Machine Learning
    Raunak, M. S.
    Kuhn, Rick
    COMPUTER, 2021, 54 (10) : 25 - 27