Application of machine learning and artificial intelligence to extend EFIT equilibrium reconstruction

被引:39
|
作者
Lao, L. L. [1 ]
Kruger, S. [2 ]
Akcay, C. [1 ]
Balaprakash, P. [3 ]
Bechtel, T. A. [1 ,4 ]
Howell, E. [2 ]
Koo, J. [3 ]
Leddy, J. [2 ]
Leinhauser, M. [5 ]
Liu, Y. Q. [1 ]
Madireddy, S. [3 ]
McClenaghan, J. [1 ]
Orozco, D. [1 ]
Pankin, A. [6 ]
Schissel, D. [6 ]
Smith, S. [1 ]
Sun, X. [1 ,4 ]
Williams, S. [7 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] TechX, Boulder, CO USA
[3] Argonne Natl Lab, Lemont, IL USA
[4] Oak Ridge Associated Univ, Oak Ridge, TN USA
[5] Univ Delaware, Newark, DE USA
[6] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[7] Lawrence Berkeley Natl Lab, Berkeley, CA USA
关键词
tokamak equilibrium reconstruction; machine learning; artificial intelligence; Gaussian process; model order reduction; neural network; 3D perturbed equilibrium; REVERSED MAGNETIC SHEAR; ENHANCED CONFINEMENT; MHD EQUILIBRIUM; TOKAMAK; DISCHARGES; STABILITY; PLASMAS; MODES;
D O I
10.1088/1361-6587/ac6fff
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent progress in the application of machine learning (ML)/artificial intelligence (AI) algorithms to improve the Equilibrium Fitting (EFIT) code equilibrium reconstruction for fusion data analysis applications is presented. A device-independent portable core equilibrium solver capable of computing or reconstructing equilibrium for different tokamaks has been created to facilitate adaptation of ML/AI algorithms. A large EFIT database comprising of DIII-D magnetic, motional Stark effect, and kinetic reconstruction data has been generated for developments of EFIT model-order-reduction (MOR) surrogate models to reconstruct approximate equilibrium solutions. A neural-network MOR surrogate model has been successfully trained and tested using the magnetically reconstructed datasets with encouraging results. Other progress includes developments of a Gaussian process Bayesian framework that can adapt its many hyperparameters to improve processing of experimental input data and a 3D perturbed equilibrium database from toroidal full magnetohydrodynamic linear response modeling using the Magnetohydrodynamic Resistive Spectrum - Feedback (MARS-F) code for developments of 3D-MOR surrogate models.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Application of artificial intelligence and machine learning for BIM: review
    Bassir D.
    Lodge H.
    Chang H.
    Majak J.
    Chen G.
    International Journal for Simulation and Multidisciplinary Design Optimization, 2023, 14
  • [2] The Application of Artificial Intelligence and Machine Learning in Pituitary Adenomas
    Dai, Congxin
    Sun, Bowen
    Wang, Renzhi
    Kang, Jun
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [3] Machine learning is not artificial intelligence
    Haller, Ben
    NEW SCIENTIST, 2019, 242 (3228) : 26 - 26
  • [4] Application and fallibility of Artificial Intelligence and machine learning in Diagnostic Pathology
    Mishra, Dr. Pallavi
    Panda, Abikshyeet
    Mahapatra, Monalisha
    Dakshinakabat, Prachurya
    Mohanty, Aishwariya
    Bhuyan, Lipsa
    BANGLADESH JOURNAL OF MEDICAL SCIENCE, 2024, 23 : S32 - S37
  • [5] Application of machine learning and artificial intelligence in oil and gas industry
    Anirbid Sircar
    Kriti Yadav
    Kamakshi Rayavarapu
    Namrata Bist
    Hemangi Oza
    Petroleum Research, 2021, (04) : 379 - 391
  • [6] Machine Learning and Artificial Intelligence
    del Campo, Matias
    Hybrids and Haecceities - Proceedings of the 42nd Annual Conference of the Association for Computer Aided Design in Architecture, ACADIA 2022, 2023,
  • [7] Artificial Intelligence and Machine Learning
    Dutta, Ashutosh
    Chng, Baw
    Kataria, Deepak
    Walid, Anwar
    Darema, Frederica
    Daneshmand, Mahmoud
    Enright, Michael A.
    Chen, Chi-Ming
    Gu, Rentao
    Wang, Honggang
    Lackpour, Alex
    Das, Pranab
    Ramachandran, Prakash
    Lala, T. K.
    Schrage, Reinhard
    Ranpara, Ripal Dilipbhai
    2023 IEEE FUTURE NETWORKS WORLD FORUM, FNWF, 2024,
  • [8] Artificial intelligence and machine learning
    Hahn, Peter
    HANDCHIRURGIE MIKROCHIRURGIE PLASTISCHE CHIRURGIE, 2019, 51 (01) : 62 - 67
  • [9] Artificial intelligence and machine learning
    Kuehl, Niklas
    Schemmer, Max
    Goutier, Marc
    Satzger, Gerhard
    ELECTRONIC MARKETS, 2022, 32 (04) : 2235 - 2244
  • [10] Application of artificial intelligence and machine learning for HIV prevention interventions
    Xiang, Yang
    Du, Jingcheng
    Fujimoto, Kayo
    Li, Fang
    Schneider, John
    Tao, Cui
    LANCET HIV, 2022, 9 (01): : E54 - E62