Optimal Sensing Precision in Ensemble and Unscented Kalman Filtering

被引:2
|
作者
Das, Niladri [1 ]
Bhattacharya, Raktim [1 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Non-linear systems; estimation; monitoring; optimal sensing; optimization; SENSOR SELECTION; OPTIMIZATION;
D O I
10.1016/j.ifacol.2020.12.1101
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of selecting an optimal set of sensor precisions to estimate the states of a non-linear dynamical system using an Ensemble Kalman filter and an Unscented Kalman filter, which uses random and deterministic ensembles respectively. Specifically, the goal is to choose at run-time, a sparse set of sensor precisions for active-sensing that satisfies certain constraints on the estimated state covariance. In this paper, we show that this sensor precision selection problem is a semidefinite programming problem when we use l(1) norm over precision vector as the surrogate measure to induce sparsity. We formulate a sensor selection scheme over multiple time steps, for certain constraints on the terminal estimated state covariance. Copyright (C) 2020 The Authors.
引用
收藏
页码:5016 / 5021
页数:6
相关论文
共 50 条
  • [41] Ensemble Kalman filtering with residual nudging
    Luo, Xiaodong
    Hoteit, Ibrahim
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2012, 64 : 1 - 22
  • [42] Variance reduced ensemble Kalman filtering
    Heemink, AW
    Verlaan, M
    Segers, AJ
    MONTHLY WEATHER REVIEW, 2001, 129 (07) : 1718 - 1728
  • [43] Ensemble Kalman Filtering without a Model
    Hamilton, Franz
    Berry, Tyrus
    Sauer, Timothy
    PHYSICAL REVIEW X, 2016, 6 (01):
  • [44] Ensemble Kalman filter with precision localization
    Gryvill, Hakon
    Tjelmeland, Hakon
    COMPUTATIONAL STATISTICS, 2024,
  • [45] Unscented weighted ensemble Kalman filter for soil moisture assimilation
    Fu, Xiaolei
    Yu, Zhongbo
    Ding, Yongjian
    Qin, Yu
    Luo, Lifeng
    Zhao, Chuancheng
    Lu, Haishen
    Jiang, Xiaolei
    Ju, Qin
    Yang, Chuanguo
    JOURNAL OF HYDROLOGY, 2020, 580 (580)
  • [46] Online model selection approach based on Unscented Kalman Filtering
    Schenkendorf, Rene
    Mangold, Michael
    JOURNAL OF PROCESS CONTROL, 2013, 23 (01) : 44 - 57
  • [47] Sensorless vector control of an IPMSM using Unscented Kalman Filtering
    Ndjana, H. J. Nanga
    Lautier, Ph.
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-7, 2006, : 2242 - +
  • [48] Comparison of Simple DME/DME Positioning Method and Augmentation Using Extended Kalman Filtering, Unscented Kalman Filtering and Particle Filtering
    Strecha, Petr
    Makula, Petr
    2019 IEEE/AIAA 38TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2019,
  • [49] Weighted Average Consensus-Based Unscented Kalman Filtering
    Li, Wangyan
    Wei, Guoliang
    Han, Fei
    Liu, Yurong
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (02) : 558 - 567
  • [50] FILTERING METEOROID FLIGHTS USING MULTIPLE UNSCENTED KALMAN FILTERS
    Sansom, E. K.
    Bland, P. A.
    Rutten, M. G.
    Paxman, J.
    Towner, M. C.
    ASTRONOMICAL JOURNAL, 2016, 152 (05):