Optimal Sensing Precision in Ensemble and Unscented Kalman Filtering

被引:2
|
作者
Das, Niladri [1 ]
Bhattacharya, Raktim [1 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Non-linear systems; estimation; monitoring; optimal sensing; optimization; SENSOR SELECTION; OPTIMIZATION;
D O I
10.1016/j.ifacol.2020.12.1101
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of selecting an optimal set of sensor precisions to estimate the states of a non-linear dynamical system using an Ensemble Kalman filter and an Unscented Kalman filter, which uses random and deterministic ensembles respectively. Specifically, the goal is to choose at run-time, a sparse set of sensor precisions for active-sensing that satisfies certain constraints on the estimated state covariance. In this paper, we show that this sensor precision selection problem is a semidefinite programming problem when we use l(1) norm over precision vector as the surrogate measure to induce sparsity. We formulate a sensor selection scheme over multiple time steps, for certain constraints on the terminal estimated state covariance. Copyright (C) 2020 The Authors.
引用
收藏
页码:5016 / 5021
页数:6
相关论文
共 50 条
  • [21] Unscented Kalman Filtering for Articulated Human Tracking
    Larsen, Anders Boesen Lindbo
    Hauberg, Soren
    Pedersen, Kim Steenstrup
    IMAGE ANALYSIS: 17TH SCANDINAVIAN CONFERENCE, SCIA 2011, 2011, 6688 : 228 - 237
  • [22] The Unscented Kalman Filtering in Extended Noise Environments
    Zhou, Yucheng
    Xu, Jiahe
    Jing, Yuanwei
    Dimirovski, Georgi M.
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 1865 - +
  • [23] Unscented Kalman filtering in the additive noise case
    Ye Liu
    AnXi Yu
    JuBo Zhu
    DianNong Liang
    Science China Technological Sciences, 2010, 53 : 929 - 941
  • [24] Application of the Unscented Kalman Filtering to Parameter Estimation
    Attarian, Adam
    Batzel, Jerry J.
    Matzuka, Brett
    Hien Tran
    MATHEMATICAL MODELING AND VALIDATION IN PHYSIOLOGY: APPLICATIONS TO THE CARDIOVASCULAR AND RESPIRATORY SYSTEMS, 2013, 2064 : 75 - 88
  • [25] UNSCENTED KALMAN FILTERING FOR AUTONOMOUS UNDERWATER NAVIGATION
    Allotta, Benedetto
    Caiti, Andrea
    Costanzi, Riccardo
    Fanelli, Francesco
    Fenucci, Davide
    Meli, Enrico
    Ridolfi, Alessandro
    COMPUTATIONAL METHODS IN MARINE ENGINEERING VI (MARINE 2015), 2015, : 1150 - 1159
  • [26] Unscented Kalman filtering for nonlinear structural dynamics
    Mariani, Stefano
    Ghisi, Aldo
    NONLINEAR DYNAMICS, 2007, 49 (1-2) : 131 - 150
  • [27] Unscented kalman filtering for SINS attitude estimation
    Zhao, Lin
    Nie, Qi
    Guo, Qiufen
    2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 2720 - 2724
  • [28] Unscented Kalman filtering for nonlinear structural dynamics
    Stefano Mariani
    Aldo Ghisi
    Nonlinear Dynamics, 2007, 49 : 131 - 150
  • [29] Ensemble Consider Kalman Filtering
    Lou, Tai-shan
    Chen, Nan-hua
    Xiong, Hua
    Li, Ya-xi
    Wang, Lei
    2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [30] Distributed Ensemble Kalman Filtering
    Shahid, Arslan
    Uestebay, Deniz
    Coates, Mark
    2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 217 - 220