Optimal Sensing Precision in Ensemble and Unscented Kalman Filtering

被引:2
|
作者
Das, Niladri [1 ]
Bhattacharya, Raktim [1 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Non-linear systems; estimation; monitoring; optimal sensing; optimization; SENSOR SELECTION; OPTIMIZATION;
D O I
10.1016/j.ifacol.2020.12.1101
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of selecting an optimal set of sensor precisions to estimate the states of a non-linear dynamical system using an Ensemble Kalman filter and an Unscented Kalman filter, which uses random and deterministic ensembles respectively. Specifically, the goal is to choose at run-time, a sparse set of sensor precisions for active-sensing that satisfies certain constraints on the estimated state covariance. In this paper, we show that this sensor precision selection problem is a semidefinite programming problem when we use l(1) norm over precision vector as the surrogate measure to induce sparsity. We formulate a sensor selection scheme over multiple time steps, for certain constraints on the terminal estimated state covariance. Copyright (C) 2020 The Authors.
引用
收藏
页码:5016 / 5021
页数:6
相关论文
共 50 条
  • [1] Truncated Unscented Kalman Filtering
    Garcia-Fernandez, Angel F.
    Morelande, Mark R.
    Grajal, Jesus
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (07) : 3372 - 3386
  • [2] Interlaced optimal-REQUEST and unscented Kalman filtering for attitude determination
    Quan Wei
    Xu Liang
    Zhang Huijuan
    Fang Jiancheng
    Chinese Journal of Aeronautics, 2013, 26 (02) : 449 - 455
  • [3] Interlaced optimal-REQUEST and unscented Kalman filtering for attitude determination
    Quan Wei
    Xu Liang
    Zhang Huijuan
    Fang Jiancheng
    CHINESE JOURNAL OF AERONAUTICS, 2013, 26 (02) : 449 - 455
  • [4] Interlaced optimal-REQUEST and unscented Kalman filtering for attitude determination
    Quan Wei
    Xu Liang
    Zhang Huijuan
    Fang Jiancheng
    Chinese Journal of Aeronautics , 2013, (02) : 449 - 455
  • [5] Ensemble Kalman filter with the unscented transform
    Luo, X.
    Moroz, I. M.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (05) : 549 - 562
  • [6] Unscented Kalman Filtering on Riemannian Manifolds
    Søren Hauberg
    François Lauze
    Kim Steenstrup Pedersen
    Journal of Mathematical Imaging and Vision, 2013, 46 : 103 - 120
  • [7] Sequence unscented Kalman filtering algorithm
    Li, Hui-ping
    Xu, De-min
    jun, Jiang Li
    Zhang, Fu-bin
    ICIEA 2008: 3RD IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, PROCEEDINGS, VOLS 1-3, 2008, : 1374 - 1378
  • [8] Unscented Kalman Filtering on Riemannian Manifolds
    Hauberg, Soren
    Lauze, Francois
    Pedersen, Kim Steenstrup
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2013, 46 (01) : 103 - 120
  • [9] Unscented Kalman Filtering on Lie Groups
    Brossard, Martin
    Bonnabel, Silvere
    Condomines, Jean-Philippe
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2485 - 2491
  • [10] Ensemble Kalman filtering
    Houtekamer, P. L.
    Mitchell, Herschel L.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) : 3269 - 3289