hyperbolicity;
shadowing;
time discretization;
numerical dynamics;
long time approximation;
exponential dichotomy;
D O I:
10.1016/j.na.2004.07.005
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The problem of persistence of trajectories of time discretizations is addressed. Analogues of essential concepts in the theory of hyperbolic flows are formulated for time discretizations. We show these are appropriate by proving that the underlying flow inherits a hyperbolic trajectory of the time discretization. Approximation properties and inherited hyperbolicity properties are analyzed. Here explicit estimates in terms of the key problem parameters are provided. An auxiliary result on roughness of exponential dichotomies for time discretizations may be of independent interest. Directions of future research are indicated. (C) 2004 Elsevier Ltd. All rights reserved.
机构:
TU Dortmund Univ, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, GermanyTU Dortmund Univ, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, Germany
Kuzmin, Dmitri
论文数: 引用数:
h-index:
机构:
Quezada de Luna, Manuel
Ketcheson, David I.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Thuwal 239556900, Saudi ArabiaTU Dortmund Univ, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, Germany
Ketcheson, David I.
Grull, Johanna
论文数: 0引用数: 0
h-index: 0
机构:
TU Dortmund Univ, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, GermanyTU Dortmund Univ, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, Germany
机构:
Georgia Tech, Sch Math, Atlanta, GA 30332 USA
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R ChinaGeorgia Tech, Sch Math, Atlanta, GA 30332 USA
Cui, Jianbo
Dieci, Luca
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Tech, Sch Math, Atlanta, GA 30332 USAGeorgia Tech, Sch Math, Atlanta, GA 30332 USA
Dieci, Luca
Zhou, Haomin
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Tech, Sch Math, Atlanta, GA 30332 USAGeorgia Tech, Sch Math, Atlanta, GA 30332 USA