Optimal sepsis patient treatment using human-in-the-loop artificial intelligence

被引:7
|
作者
Gupta, Akash [1 ]
Lash, Michael T. [2 ]
Nachimuthu, Senthil K. [3 ]
机构
[1] Calif State Univ Northridge, 18111 Nordhoff St, Northridge, CA 91330 USA
[2] Univ Kansas, 1654 Naismith Dr, Lawrence, KS 66045 USA
[3] 3M Hlth Informat Syst Inc, 575 W Murray Blvd, Murray, UT 84123 USA
关键词
Sepsis; Fluid resuscitation; Artificial intelligence; Optimization; Inverse classifier; CAMPAIGN INTERNATIONAL GUIDELINES; FLUID THERAPY; SEPTIC SHOCK; RESUSCITATION; MANAGEMENT; FAILURE; SYSTEM; SCORE; RISK;
D O I
10.1016/j.eswa.2020.114476
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sepsis is one of the leading causes of death in Intensive Care Units (ICU). The strategy for treating sepsis involves the infusion of intravenous (IV) fluids and administration of antibiotics. Determining the optimal quantity of IV fluids is a challenging problem due to the complexity of a patient's physiology. In this study, we develop a data driven optimization solution that derives the optimal quantity of IV fluids for individual patients. The proposed method minimizes the probability of severe outcomes by controlling the prescribed quantity of IV fluids and utilizes human-in-the-loop artificial intelligence. We demonstrate the performance of our model on 1122 ICU patients with sepsis diagnosis extracted from the MIMIC-III dataset. The results show that, on average, our model can reduce mortality by 22%. This study has the potential to help physicians synthesize optimal, patient-specific treatment strategies.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Human-in-the-loop evaluation of a vehicle stability controller using a vehicle simulator
    Chung, T
    Kim, J
    Yi, K
    [J]. INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2004, 5 (02) : 109 - 114
  • [42] Sensitivity analysis–based sepsis prognosis using artificial intelligence
    de Alencar Saraiva J.L.
    Becker O.M., Jr.
    Silva E.
    Kadirkamanathan V.
    Kienitz K.H.
    [J]. Research on Biomedical Engineering, 2020, 36 (04): : 449 - 461
  • [43] Online Learning Human Behavior for a Class of Human-in-the-Loop Systems via Adaptive Inverse Optimal Control
    Wu, Huai-Ning
    [J]. IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2022, 52 (05) : 1004 - 1014
  • [44] Using Segmentation to Improve Machine Learning Performance in Human-in-the-Loop Systems
    Carneiro, Davide
    Carvalho, Mariana
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2023, 543 : 413 - 428
  • [45] Optimal Wifi Position Detection using Artificial Intelligence
    Agrawal, Heena
    Agrawal, Rahul
    Chandani, Rohit
    Nema, Sakshi
    [J]. INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2023, 14 : 313 - 320
  • [46] Optimal Volt/Var Control for Unbalanced Distribution Networks With Human-in-the-Loop Deep Reinforcement Learning
    Sun, Xianzhuo
    Xu, Zhao
    Qiu, Jing
    Liu, Huichuan
    Wu, Huayi
    Tao, Yuechuan
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (03) : 2639 - 2651
  • [47] MindSet: A Bias-Detection Interface Using a Visual Human-in-the-Loop Workflow
    Kalananthan, Senthuran
    Kichutkin, Alexander
    Shang, Ziyao
    Strausz, Andras
    Bautiste, Francisco Javier Sanguino
    El-Assady, Mennatallah
    [J]. ARTIFICIAL INTELLIGENCE-ECAI 2023 INTERNATIONAL WORKSHOPS, PT 2, XAI3, TACTIFUL, XI-ML, SEDAMI, RAAIT, AI4S, HYDRA, AI4AI, 2023, 2024, 1948 : 93 - 105
  • [48] A HUMAN-IN-THE-LOOP INVESTIGATION OF SECTOR COMPLEXITY USING GROUND-BASED AUTOMATION
    Romanelli, Jessica E.
    Hughes, William J.
    Bender, Kimberlea
    [J]. 2009 IEEE/AIAA 28TH DIGITAL AVIONICS SYSTEMS CONFERENCE, VOLS 1-3, 2009, : 444 - +
  • [49] Using human-in-the-loop and explainable AI to envisage new future work practices
    Tsiakas, Konstantinos
    Murray-Rust, Dave
    [J]. PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2022, 2022, : 588 - 594
  • [50] Using a human-in-the-loop evolutionary algorithm to create data-driven music
    Bryden, Kris
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 2050 - 2056