Global existence and non-existence theorems for nonlinear wave equations

被引:46
|
作者
Pitts, DR [1 ]
Rammaha, MA [1 ]
机构
[1] Univ Nebraska, Dept Math & Stat, Lincoln, NE 68588 USA
关键词
wave equations; damping and source terms; weak solutions; blow-up of solutions;
D O I
10.1512/iumj.2002.51.2215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we focus on the global well-posedness of an initial-boundary value problem for a nonlinear wave equation in all space dimensions. The nonlinearity in the equation features the damping term /u/(k)/u(t)/(m) sgn(u(t)) and a source term of the form /u/(p-1)u, where k, p greater than or equal to 1 and 0 < m < 1. In addition, if the space dimension n greater than or equal to 3, then the parameters k, m and p satisfy p, k/(1 - m) less than or equal to n/(n - 2). We show that whenever k + m greater than or equal to p, then local weak solutions are global. On the other hand, we prove that whenever p > k + m and the initial energy is negative, then local weak solutions blow-up in finite time, regardless of the size of the initial data.
引用
收藏
页码:1479 / 1509
页数:31
相关论文
共 50 条
  • [21] Non-existence of Global Solutions to a System of Fractional Diffusion Equations
    Kirane, M.
    Ahmad, B.
    Alsaedi, A.
    Al-Yami, M.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2014, 133 (01) : 235 - 248
  • [22] Non-existence of Global Solutions to a System of Fractional Diffusion Equations
    M. Kirane
    B. Ahmad
    A. Alsaedi
    M. Al-Yami
    [J]. Acta Applicandae Mathematicae, 2014, 133 : 235 - 248
  • [23] ON NON-EXISTENCE OF GLOBAL SOLUTIONS TO A CLASS OF STOCHASTIC HEAT EQUATIONS
    Foondun, Mohammud
    Parshad, Rana D.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (09) : 4085 - 4094
  • [24] Non-existence results for stochastic wave equations in one dimension
    Foondun, Mohammud
    Nualart, Eulalia
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 318 : 557 - 578
  • [25] Theorems of global existence for wave-type semilinear equations
    Lucente, S
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3A (03): : 363 - 366
  • [26] NON-EXISTENCE THEOREMS IN LINEAR ELASTICITY THEORY
    ERICKSEN, JL
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1963, 14 (03) : 180 - 183
  • [27] Non-existence theorems on infinite order corks
    Tange, Motoo
    [J]. ADVANCES IN MATHEMATICS, 2023, 429
  • [28] Global non-existence of solutions of a class of wave equations with non-linear damping and source terms
    Messaoudi, SA
    Houari, BS
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (14) : 1687 - 1696
  • [29] Existence and Non-existence of Global Solutions for a Nonlocal Choquard-Kirchhoff Diffusion Equations in R
    Boudjeriou, Tahir
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S695 - S732
  • [30] GLOBAL EXISTENCE OF SOLUTIONS TO NONLINEAR DISPERSIVE WAVE EQUATIONS
    Hayashi, Nakao
    Kobayashi, Seishru
    Naumkin, Pavel I.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2012, 25 (7-8) : 685 - 698