Theorems of global existence for wave-type semilinear equations

被引:0
|
作者
Lucente, S [1 ]
机构
[1] Univ Basilicata, Dipartimento Matemat, Basilicata, Italy
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:363 / 366
页数:4
相关论文
共 50 条
  • [1] Global existence and uniqueness of the 2D damped wave-type MHD equations
    Weixian Sun
    Wenjuan Wang
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [2] Global existence and uniqueness of the 2D damped wave-type MHD equations
    Sun, Weixian
    Wang, Wenjuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):
  • [3] Almost global existence for some semilinear wave equations
    Markus Keel
    Hart F. Smith
    Christopher D. Sogge
    Journal d'Analyse Mathématique, 2002, 87 : 265 - 279
  • [4] Global existence for semilinear wave equations in exterior domains
    Nakao, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (04) : 2497 - 2506
  • [5] Almost global existence for some semilinear wave equations
    Keel, M
    Smith, HF
    Sogge, CD
    JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1): : 265 - 279
  • [6] Existence theorems for semilinear equations in cones
    Cremins, CT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) : 447 - 457
  • [7] On existence theorems for semilinear equations and applications
    Zhang, Fang
    Wang, Feng
    ANNALES POLONICI MATHEMATICI, 2013, 107 (02) : 123 - 131
  • [8] WELL-POSEDNESS AND STABILITY FOR SEMILINEAR WAVE-TYPE EQUATIONS WITH TIME DELAY
    Paolucci, Alessandro
    Pignotti, Cristina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (06): : 1561 - 1571
  • [9] Weighted Strichartz estimates and global existence for semilinear wave equations
    Georgiev, V
    Lindblad, H
    Sogge, CD
    AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (06) : 1291 - 1319
  • [10] GLOBAL EXISTENCE FOR SEMILINEAR DAMPED WAVE EQUATIONS IN THE SCATTERING CASE
    Bai, Yige
    Liu, Mengyun
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2019, 32 (3-4) : 233 - 248