A Spatial-Temporal Attention Approach for Traffic Prediction

被引:102
|
作者
Shi, Xiaoming [1 ]
Qi, Heng [1 ]
Shen, Yanming [1 ,2 ]
Wu, Genze [1 ]
Yin, Baocai [1 ,3 ]
机构
[1] Dalian Univ Technol, Sch Elect Informat & Elect Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equip, Minist Educ, Dalian 116024, Peoples R China
[3] Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Correlation; Neural networks; Predictive models; Roads; Convolution; Semantics; Time series analysis; Attention mechanism; traffic prediction; neural networks; NETWORK; DEMAND; FLOW;
D O I
10.1109/TITS.2020.2983651
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate traffic forecasting is important to enable intelligent transportation systems in a smart city. This problem is challenging due to the complicated spatial, short-term temporal and long-term periodical dependencies. Existing approaches have considered these factors in modeling. Most solutions apply CNN, or its extension Graph Convolution Networks (GCN) to model the spatial correlation. However, the convolution operator may not adequately model the non-Euclidean pair-wise correlations. In this paper, we propose a novel Attention-based Periodic-Temporal neural Network (APTN), an end-to-end solution for traffic foresting that captures spatial, short-term, and long-term periodical dependencies. APTN first uses an encoder attention mechanism to model both the spatial and periodical dependencies. Our model can capture these dependencies more easily because every node attends to all other nodes in the network, which brings regularization effect to the model and avoids overfitting between nodes. Then, a temporal attention is applied to select relevant encoder hidden states across all time steps. We evaluate our proposed model using real world traffic datasets and observe consistent improvements over state-of-the-art baselines.
引用
收藏
页码:4909 / 4918
页数:10
相关论文
共 50 条
  • [31] Dynamic attention aggregated missing spatial-temporal data imputation for traffic speed prediction
    Bikram, Pritam
    Das, Shubhajyoti
    Biswas, Arindam
    NEUROCOMPUTING, 2024, 607
  • [32] Urban Traffic Flow Prediction Based on Regional Spatial-Temporal Correlation with Dual Attention
    School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu
    611756, China
    ISKE - Int. Conf. Intell. Syst. Knowl. Eng., (402-409): : 402 - 409
  • [33] Channel attention-based spatial-temporal graph neural networks for traffic prediction
    Wang, Bin
    Gao, Fanghong
    Tong, Le
    Zhang, Qian
    Zhu, Sulei
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 58 (01) : 81 - 94
  • [34] Multiple Information Spatial-Temporal Attention based Graph Convolution Network for traffic prediction
    Tao, Shiming
    Zhang, Huyin
    Yang, Fei
    Wu, Yonghao
    Li, Cong
    APPLIED SOFT COMPUTING, 2023, 136
  • [35] An Attention-based Approach for Traffic Conditions Forecasting Considering Spatial-Temporal Features
    Tao, Lu
    Gu, Yuanli
    Lu, Wenqi
    Rui, Xiaoping
    Zhou, Tian
    Ding, Ying
    2020 IEEE 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (IEEE ICITE 2020), 2020, : 117 - 122
  • [36] Spatial-Temporal Correlation Learning for Traffic Demand Prediction
    Wu, Yiling
    Zhao, Yingping
    Zhang, Xinfeng
    Wang, Yaowei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024,
  • [37] A Spatial-Temporal Attention Model for Human Trajectory Prediction
    Xiaodong Zhao
    Yaran Chen
    Jin Guo
    Dongbin Zhao
    IEEE/CAA Journal of Automatica Sinica, 2020, 7 (04) : 965 - 974
  • [38] A spatial-temporal attention model for human trajectory prediction
    Zhao, Xiaodong
    Chen, Yaran
    Guo, Jin
    Zhao, Dongbin
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (04) : 965 - 974
  • [39] Graph Spatial-Temporal Transformer Network for Traffic Prediction
    Zhao, Zhenzhen
    Shen, Guojiang
    Wang, Lei
    Kong, Xiangjie
    BIG DATA RESEARCH, 2024, 36
  • [40] Spatial-Temporal Large Language Model for Traffic Prediction
    Liu, Chenxi
    Yang, Sun
    Xu, Qianxiong
    Li, Zhishuai
    Long, Cheng
    Li, Ziyue
    Zhao, Rui
    PROCEEDINGS OF THE 2024 25TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT, MDM 2024, 2024, : 31 - 40