A Spatial-Temporal Attention Approach for Traffic Prediction

被引:102
|
作者
Shi, Xiaoming [1 ]
Qi, Heng [1 ]
Shen, Yanming [1 ,2 ]
Wu, Genze [1 ]
Yin, Baocai [1 ,3 ]
机构
[1] Dalian Univ Technol, Sch Elect Informat & Elect Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equip, Minist Educ, Dalian 116024, Peoples R China
[3] Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Correlation; Neural networks; Predictive models; Roads; Convolution; Semantics; Time series analysis; Attention mechanism; traffic prediction; neural networks; NETWORK; DEMAND; FLOW;
D O I
10.1109/TITS.2020.2983651
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate traffic forecasting is important to enable intelligent transportation systems in a smart city. This problem is challenging due to the complicated spatial, short-term temporal and long-term periodical dependencies. Existing approaches have considered these factors in modeling. Most solutions apply CNN, or its extension Graph Convolution Networks (GCN) to model the spatial correlation. However, the convolution operator may not adequately model the non-Euclidean pair-wise correlations. In this paper, we propose a novel Attention-based Periodic-Temporal neural Network (APTN), an end-to-end solution for traffic foresting that captures spatial, short-term, and long-term periodical dependencies. APTN first uses an encoder attention mechanism to model both the spatial and periodical dependencies. Our model can capture these dependencies more easily because every node attends to all other nodes in the network, which brings regularization effect to the model and avoids overfitting between nodes. Then, a temporal attention is applied to select relevant encoder hidden states across all time steps. We evaluate our proposed model using real world traffic datasets and observe consistent improvements over state-of-the-art baselines.
引用
收藏
页码:4909 / 4918
页数:10
相关论文
共 50 条
  • [21] Attention Mechanism With Spatial-Temporal Joint Model for Traffic Flow Speed Prediction
    Hu, Hexuan
    Lin, Zhenzhou
    Hu, Qiang
    Zhang, Ye
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 16612 - 16621
  • [22] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243
  • [23] Attention Mechanism Based Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    Journal of Computers (Taiwan), 2024, 35 (04) : 93 - 108
  • [24] GSTA: gated spatial-temporal attention approach for travel time prediction
    Khaled, Alkilane
    Elsir, Alfateh M. Tag
    Shen, Yanming
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (03): : 2307 - 2322
  • [25] Spatial-Temporal Graph Attention Networks: A Deep Learning Approach for Traffic Forecasting
    Zhang, Chenhan
    Yu, James J. Q.
    Liu, Yi
    IEEE ACCESS, 2019, 7 : 166246 - 166256
  • [26] Spatial-Temporal Graph Attention Model on Traffic Forecasting
    Zhang, Xinlan
    Zhang, Zhenguo
    Jin, Xiaofeng
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 999 - 1003
  • [27] Sampling Spatial-Temporal Attention Network for Traffic Forecasting
    Chen, Mao
    Xu, Yi
    Han, Liangzhe
    Sun, Leilei
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2023, 2023, 14118 : 121 - 136
  • [28] Graph Attention Spatial-Temporal Network for Deep Learning Based Mobile Traffic Prediction
    He, Kaiwen
    Huang, Yufen
    Chen, Xu
    Zhou, Zhi
    Yu, Shuai
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [29] Multivariate and Propagation Graph Attention Network for Spatial-Temporal Prediction with Outdoor Cellular Traffic
    Lin, Chung-Yi
    Su, Hung-Ting
    Tung, Shen-Lung
    Hsu, Winston H.
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3248 - 3252
  • [30] Spatial-Temporal Attention Graph Convolution Network on Edge Cloud for Traffic Flow Prediction
    Lai, Qifeng
    Tian, Jinyu
    Wang, Wei
    Hu, Xiping
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 4565 - 4576