A Spatial-Temporal Attention Approach for Traffic Prediction

被引:102
|
作者
Shi, Xiaoming [1 ]
Qi, Heng [1 ]
Shen, Yanming [1 ,2 ]
Wu, Genze [1 ]
Yin, Baocai [1 ,3 ]
机构
[1] Dalian Univ Technol, Sch Elect Informat & Elect Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equip, Minist Educ, Dalian 116024, Peoples R China
[3] Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Correlation; Neural networks; Predictive models; Roads; Convolution; Semantics; Time series analysis; Attention mechanism; traffic prediction; neural networks; NETWORK; DEMAND; FLOW;
D O I
10.1109/TITS.2020.2983651
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate traffic forecasting is important to enable intelligent transportation systems in a smart city. This problem is challenging due to the complicated spatial, short-term temporal and long-term periodical dependencies. Existing approaches have considered these factors in modeling. Most solutions apply CNN, or its extension Graph Convolution Networks (GCN) to model the spatial correlation. However, the convolution operator may not adequately model the non-Euclidean pair-wise correlations. In this paper, we propose a novel Attention-based Periodic-Temporal neural Network (APTN), an end-to-end solution for traffic foresting that captures spatial, short-term, and long-term periodical dependencies. APTN first uses an encoder attention mechanism to model both the spatial and periodical dependencies. Our model can capture these dependencies more easily because every node attends to all other nodes in the network, which brings regularization effect to the model and avoids overfitting between nodes. Then, a temporal attention is applied to select relevant encoder hidden states across all time steps. We evaluate our proposed model using real world traffic datasets and observe consistent improvements over state-of-the-art baselines.
引用
收藏
页码:4909 / 4918
页数:10
相关论文
共 50 条
  • [1] Spatial-temporal attention fusion for traffic speed prediction
    Zhang, Anqin
    Liu, Qizheng
    Zhang, Ting
    SOFT COMPUTING, 2022, 26 (02) : 695 - 707
  • [2] A General Traffic Flow Prediction Approach Based on Spatial-Temporal Graph Attention
    Tang, Cong
    Sun, Jingru
    Sun, Yichuang
    Peng, Mu
    Gan, Nianfei
    IEEE ACCESS, 2020, 8 : 153731 - 153741
  • [3] Attention spatial-temporal graph neural network for traffic prediction
    Gan P.
    Nong L.
    Zhang W.
    Lin J.
    Wang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 168 - 176
  • [4] A Spatial-Temporal DL Approach for Traffic Flow Prediction using Attention Fusion Method
    Godhbani, Salah
    Elkosantini, Sabeur
    Lee, Seongkwan M.
    Suh, Wonho
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND EMERGENT TECHNOLOGIES, ICASET 2024, 2024,
  • [5] Spatial-temporal attention wavenet: A deep learning framework for traffic prediction considering spatial-temporal dependencies
    Tian, Chenyu
    Chan, Wai Kin
    IET INTELLIGENT TRANSPORT SYSTEMS, 2021, 15 (04) : 549 - 561
  • [6] Adaptive spatial-temporal graph attention network for traffic speed prediction
    张玺君
    ZHANG Baoqi
    ZHANG Hong
    NIE Shengyuan
    ZHANG Xianli
    High Technology Letters, 2024, 30 (03) : 221 - 230
  • [7] Adaptive spatial-temporal graph attention network for traffic speed prediction
    Zhang, Xijun
    Zhang, Baoqi
    Zhang, Hong
    Nie, Shengyuan
    Zhang, Xianli
    High Technology Letters, 2024, 30 (03) : 221 - 230
  • [8] Traffic Agents Trajectory Prediction Based on Spatial-Temporal Interaction Attention
    Xie, Jincan
    Li, Shuang
    Liu, Chunsheng
    SENSORS, 2023, 23 (18)
  • [9] Modeling Global Spatial-Temporal Graph Attention Network for Traffic Prediction
    Sun, Bin
    Zhao, Duan
    Shi, Xinguo
    He, Yongxin
    IEEE ACCESS, 2021, 9 : 8581 - 8594
  • [10] Unified Spatial-Temporal Neighbor Attention Network for Dynamic Traffic Prediction
    Long, Wangchen
    Xiao, Zhu
    Wang, Dong
    Jiang, Hongbo
    Chen, Jie
    Li, You
    Alazab, Mamoun
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (02) : 1515 - 1529