Local and correlation attention learning for subtle facial expression recognition

被引:9
|
作者
Wang, Shaocong [1 ,2 ]
Yuan, Yuan [3 ]
Zheng, Xiangtao [1 ]
Lu, Xiaoqiang [1 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Shaanxi, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Facial expression recognition; Feature extraction; Neural network; Attention mechanism; NETWORK;
D O I
10.1016/j.neucom.2020.07.120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subtle facial expression recognition (SFER) aims to classify facial expressions with very low intensity into corresponding human emotions. Subtle facial expression can be regarded as a special kind of facial expression, whose facial muscle movements are more difficult to capture. In the last decade, various methods have been developed for common facial expression recognition (FER). However, most of them failed to automatically find the most discriminative parts of facial expression and the correlation of muscle movements when human makes facial expression, which makes them unsuitable for SFER. To better solve SFER problem, an attention mechanism based model focusing on salient local regions and their correlations is proposed in this paper. The proposed method: 1) utilizes multiple attention blocks to attend to distinct discriminative regions and extract corresponding local features automatically, 2) a correlation attention module is integrated in the model to extract global correlation feature over the salient regions, and finally 3) fuses the correlation feature and local features in an efficient way for the final facial expression classification. By this way, the useful but subtle local information can be utilized in more detail, and the correlation of different local regions is also extracted. Extensive experiment on the LSEMSW and CK+ datasets shows that the method proposed in this paper achieves superior results, which demonstrates its effectiveness. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:742 / 753
页数:12
相关论文
共 50 条
  • [31] Light Attention Embedding for Facial Expression Recognition
    Wang, Cong
    Xue, Jian
    Lu, Ke
    Yan, Yanfu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 1834 - 1847
  • [32] FERAtt: Facial Expression Recognition with Attention Net
    Marrero Fernandez, Pedro D.
    Guerrero Pena, Fidel A.
    Ren, Tsang Ing
    Cunha, Alexandre
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 837 - 846
  • [33] Local Multi-Head Channel Self-Attention for Facial Expression Recognition
    Pecoraro, Roberto
    Basile, Valerio
    Bono, Viviana
    INFORMATION, 2022, 13 (09)
  • [34] Facial Expression Recognition Based on Local Facial Regions
    Nan, Zhang
    Xue, Geng
    2011 IET 4TH INTERNATIONAL CONFERENCE ON WIRELESS, MOBILE & MULTIMEDIA NETWORKS (ICWMMN 2011), 2011, : 262 - 265
  • [35] Magnifying Subtle Facial Motions for 4D Expression Recognition
    Zhen, Qingkai
    Huang, Di
    Wang, Yunhong
    Drira, Hassen
    Ben Amor, Boulbaba
    Daoudi, Mohamed
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2252 - 2257
  • [36] Learning Discriminative Features with Region Attention and Refinement Network for Facial Expression Recognition in the Wild
    Li, Xiao
    Li, Chunlei
    Tian, Bo
    Liu, Zhoufeng
    Yang, Ruimin
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1113 - 1119
  • [37] Robust facial expression recognition with global-local joint representation learning
    Chunxiao Fan
    Zhenxing Wang
    Jia Li
    Shanshan Wang
    Xiao Sun
    Multimedia Systems, 2023, 29 : 3069 - 3079
  • [38] Robust facial expression recognition with global-local joint representation learning
    Fan, Chunxiao
    Wang, Zhenxing
    Li, Jia
    Wang, Shanshan
    Sun, Xiao
    MULTIMEDIA SYSTEMS, 2023, 29 (05) : 3069 - 3079
  • [39] MANIFOLD LEARNING APPROACH TO FACIAL EXPRESSION RECOGNITION ON LOCAL BINARY PATTERN FEATURES
    Ying, Zi-Lu
    Zhang, You-Wei
    Li, Jing-Wen
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 405 - +
  • [40] Facial Expression Recognition with Machine Learning
    Chang, Jia Xiu
    Poo Lee, Chin
    Lim, Kian Ming
    Yan Lim, Jit
    2023 11th International Conference on Information and Communication Technology, ICoICT 2023, 2023, 2023-August : 125 - 130