Local and correlation attention learning for subtle facial expression recognition

被引:9
|
作者
Wang, Shaocong [1 ,2 ]
Yuan, Yuan [3 ]
Zheng, Xiangtao [1 ]
Lu, Xiaoqiang [1 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Shaanxi, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Facial expression recognition; Feature extraction; Neural network; Attention mechanism; NETWORK;
D O I
10.1016/j.neucom.2020.07.120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subtle facial expression recognition (SFER) aims to classify facial expressions with very low intensity into corresponding human emotions. Subtle facial expression can be regarded as a special kind of facial expression, whose facial muscle movements are more difficult to capture. In the last decade, various methods have been developed for common facial expression recognition (FER). However, most of them failed to automatically find the most discriminative parts of facial expression and the correlation of muscle movements when human makes facial expression, which makes them unsuitable for SFER. To better solve SFER problem, an attention mechanism based model focusing on salient local regions and their correlations is proposed in this paper. The proposed method: 1) utilizes multiple attention blocks to attend to distinct discriminative regions and extract corresponding local features automatically, 2) a correlation attention module is integrated in the model to extract global correlation feature over the salient regions, and finally 3) fuses the correlation feature and local features in an efficient way for the final facial expression classification. By this way, the useful but subtle local information can be utilized in more detail, and the correlation of different local regions is also extracted. Extensive experiment on the LSEMSW and CK+ datasets shows that the method proposed in this paper achieves superior results, which demonstrates its effectiveness. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:742 / 753
页数:12
相关论文
共 50 条
  • [21] Discriminative attention-augmented feature learning for facial expression recognition in the wild
    Zhou, Linyi
    Fan, Xijian
    Tjahjadi, Tardi
    Das Choudhury, Sruti
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (02): : 925 - 936
  • [22] Hybrid Attention-Aware Learning Network for Facial Expression Recognition in the Wild
    Gong, Weijun
    La, Zhiyao
    Qian, Yurong
    Zhou, Weihang
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (09) : 12203 - 12217
  • [23] Discriminative attention-augmented feature learning for facial expression recognition in the wild
    Linyi Zhou
    Xijian Fan
    Tardi Tjahjadi
    Sruti Das Choudhury
    Neural Computing and Applications, 2022, 34 : 925 - 936
  • [24] Facial Expression Recognition using Local Directional Pattern variants and Deep Learning Computer Vision and Facial Recognition
    Chengeta, Kennedy
    Viriri, Serestina
    2018 INTERNATIONAL CONFERENCE ON ALGORITHMS, COMPUTING AND ARTIFICIAL INTELLIGENCE (ACAI 2018), 2018,
  • [25] CA-FER: Mitigating Spurious Correlation With Counterfactual Attention in Facial Expression Recognition
    Huang, Pin-Jui
    Xie, Hongxia
    Huang, Hung-Cheng
    Shuai, Hong-Han
    Cheng, Wen-Huang
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2024, 15 (03) : 977 - 989
  • [26] Proposal of Recurrent Attention Module for Capturing Subtle Facial Expression Changes
    Miyoshi, Ryo
    Nagata, Noriko
    Hashimoto, Manabu
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2022, 88 (02): : 168 - 173
  • [27] Facial expression recognition based on facial part attention mechanism
    Zhong, Qiubo
    Fang, Baofu
    Wei, Shenbin
    Wang, Zaijun
    Zhang, Haoxiang
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (03)
  • [28] Multiple Attention Network for Facial Expression Recognition
    Gan, Yanling
    Chen, Jingying
    Yang, Zongkai
    Xu, Luhui
    IEEE ACCESS, 2020, 8 : 7383 - 7393
  • [29] Facial Expression Recognition Based on Attention Mechanism
    Jiang, Daihong
    Hu, Yuanzheng
    Lei, Dai
    Jin, Peng
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [30] A Region Group Adaptive Attention Model For Subtle Expression Recognition
    Chen, Gan
    Peng, Junjie
    Zhang, Wenqiang
    Huang, Kanrun
    Cheng, Feng
    Yuan, Haochen
    Huang, Yansong
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (02) : 1613 - 1626