A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions

被引:5
|
作者
Gomez, Cesar A. [1 ]
Rossi, Julio D. [2 ]
机构
[1] Univ Nacl Colombia, Dept Math, Bogota, Colombia
[2] Univ Buenos Aires, Dept Matemat, FCEyN, Ciudad Univ Pab 1, RA-1428 Buenos Aires, DF, Argentina
关键词
Nonlocal diffusion; Neumann boundary conditions; Heat equation; ASYMPTOTIC-BEHAVIOR; MODEL;
D O I
10.1016/j.jksus.2017.08.008
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we discuss a nonlocal approximation to the classical heat equation with Neumann boundary conditions. We consider w(t)(epsilon)(x, t) = 1/epsilon(N+2) integral(Omega)J(x-y/epsilon)(w(epsilon)(y, t) - w(epsilon)(x, t))dy + C-1/epsilon(N) integral(partial derivative Omega)J(x-y/epsilon)g(y, t) dS(y), (x, t) is an element of(Omega) over bar x (0, T), w(x, 0) = u(0)(x), x is an element of(Omega) over bar, and we show that the corresponding solutions, w(epsilon), converge to the classical solution of the local heat equation v(t) = Delta v with Neumann boundary conditions, partial derivative v/partial derivative n(x, t) = g(x, t), and initial condition v(0) = u(0), as the parameter epsilon goes to zero. The obtained convergence is in the weak star on L-infinity topology. (C) 2017 The Authors. Production and hosting by Elsevier B.V.
引用
收藏
页码:17 / 20
页数:4
相关论文
共 50 条