A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions

被引:5
|
作者
Gomez, Cesar A. [1 ]
Rossi, Julio D. [2 ]
机构
[1] Univ Nacl Colombia, Dept Math, Bogota, Colombia
[2] Univ Buenos Aires, Dept Matemat, FCEyN, Ciudad Univ Pab 1, RA-1428 Buenos Aires, DF, Argentina
关键词
Nonlocal diffusion; Neumann boundary conditions; Heat equation; ASYMPTOTIC-BEHAVIOR; MODEL;
D O I
10.1016/j.jksus.2017.08.008
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we discuss a nonlocal approximation to the classical heat equation with Neumann boundary conditions. We consider w(t)(epsilon)(x, t) = 1/epsilon(N+2) integral(Omega)J(x-y/epsilon)(w(epsilon)(y, t) - w(epsilon)(x, t))dy + C-1/epsilon(N) integral(partial derivative Omega)J(x-y/epsilon)g(y, t) dS(y), (x, t) is an element of(Omega) over bar x (0, T), w(x, 0) = u(0)(x), x is an element of(Omega) over bar, and we show that the corresponding solutions, w(epsilon), converge to the classical solution of the local heat equation v(t) = Delta v with Neumann boundary conditions, partial derivative v/partial derivative n(x, t) = g(x, t), and initial condition v(0) = u(0), as the parameter epsilon goes to zero. The obtained convergence is in the weak star on L-infinity topology. (C) 2017 The Authors. Production and hosting by Elsevier B.V.
引用
收藏
页码:17 / 20
页数:4
相关论文
共 50 条
  • [21] Numerical solution of the heat equation with nonlocal boundary conditions
    Liu, YK
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 110 (01) : 115 - 127
  • [22] An inverse problem in diffusion theory with nonlocal boundary conditions
    Orazov, Issabek
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'16), 2016, 1789
  • [23] On a Problem of Cross-Diffusion with Nonlocal Boundary Conditions
    Rakhmonov, Zafar R.
    Urunbayev, Jasur E.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2019, 12 (05): : 614 - 620
  • [24] Inverse time-dependent source problem for the heat equation with a nonlocal Wentzell-Neumann boundary condition
    Bazan, Fermin S., V
    Bedin, Luciano
    Ismailov, Mansur I.
    Borges, Leonardo S.
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (04) : 1747 - 1771
  • [25] An inverse boundary value problem for the heat equation: the Neumann condition
    Chapko, R
    Kress, R
    Yoon, JR
    INVERSE PROBLEMS, 1999, 15 (04) : 1033 - 1046
  • [26] Compact Difference Schemes for Heat Equation with Neumann Boundary Conditions
    Sun, Zhi-Zhong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (06) : 1320 - 1341
  • [27] Simultaneous control for the heat equation with Dirichlet and Neumann boundary conditions
    Burq, Nicolas
    Moyano, Ivan
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [28] QUALITATIVE AND QUANTITATIVE ANALYSIS FOR A NONLOCAL AND NONLINEAR REACTION-DIFFUSION PROBLEM WITH IN-HOMOGENEOUS NEUMANN BOUNDARY CONDITIONS
    Morosanu, Costica
    Satco, Bianca
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, : 1 - 15
  • [29] NUMERICAL SOLUTION FOR STOCHASTIC HEAT EQUATION WITH NEUMANN BOUNDARY CONDITIONS
    Balachandar, S. Raja
    Uma, D.
    Jafari, H.
    Venkatesh, S. G.
    THERMAL SCIENCE, 2023, 27 (Special Issue 1): : S57 - S66
  • [30] Periodic solution of a quasilinear parabolic equation with nonlocal terms and Neumann boundary conditions
    Hameed, Raad Awad
    Wu, Boying
    Sun, Jiebao
    BOUNDARY VALUE PROBLEMS, 2013,