High resolution core level spectroscopy of hydrogen-terminated (100) diamond

被引:17
|
作者
Schenk, A. K. [1 ]
Rietwyk, K. J. [2 ]
Tadich, A. [1 ,3 ]
Stacey, A. [4 ]
Ley, L. [1 ,5 ]
Pakes, C. I. [1 ]
机构
[1] La Trobe Univ, La Trobe Inst Mol Sci, Dept Chem & Phys, Bundoora, Vic 3086, Australia
[2] Bar Ilan Univ, Ctr Nanotechnol & Adv Mat, Dept Chem, IL-5290002 Ramat Gan, Israel
[3] Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia
[4] Univ Melbourne, Ctr Quantum Computat & Commun Technol, Sch Phys, Melbourne, Vic 3010, Australia
[5] Univ Erlangen Nurnberg, Inst Tech Phys, Staudtstr 1, D-91058 Erlangen, Germany
基金
澳大利亚研究理事会;
关键词
photoelectron spectroscopy; hydrogen-terminated diamond; diamond (100) surface; X-RAY PHOTOEMISSION; ABSORPTION FINE-STRUCTURE; SINGLE-CRYSTAL; SURFACE; SPECTRA; ORIGIN;
D O I
10.1088/0953-8984/28/30/305001
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Synchrotron-based photoelectron spectroscopy experiments are presented that address a long standing inconsistency in the treatment of the C1s core level of hydrogen terminated (1 0 0) diamond. Through a comparison of surface and bulk sensitive measurements we show that there is a surface related core level component to lower binding energy of the bulk diamond component; this component has a chemical shift of -0.16 +/- 0.05 eV which has been attributed to carbon atoms which are part of the hydrogen termination. Additionally, our results indicate that the asymmetry of the hydrogen terminated (1 0 0) diamond C1s core level is an intrinsic aspect of the bulk diamond peak which we have attributed to sub-surface carbon layers.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] High-resolution surface-sensitive C 1s core-level spectra of clean and hydrogen-terminated diamond (100) and (111) surfaces
    Graupner, R
    Maier, F
    Ristein, J
    Ley, L
    Jung, C
    PHYSICAL REVIEW B, 1998, 57 (19) : 12397 - 12409
  • [2] PRODUCTION AND CHARACTERIZATION OF SMOOTH, HYDROGEN-TERMINATED DIAMOND C(100)
    THOMS, BD
    OWENS, MS
    BUTLER, JE
    SPIRO, C
    APPLIED PHYSICS LETTERS, 1994, 65 (23) : 2957 - 2959
  • [3] High mobility holes on hydrogen-terminated diamond surface
    Shinagawa, H
    Kido, G
    Takamasu, T
    Gamo, MN
    Ando, T
    SUPERLATTICES AND MICROSTRUCTURES, 2002, 32 (4-6) : 289 - 294
  • [4] The physics of hydrogen-terminated diamond surfaces
    Ristein, J
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2005, 772 : 377 - 380
  • [5] Hydrogen-terminated diamond surfaces and interfaces
    Kawarada, H
    SURFACE SCIENCE REPORTS, 1996, 26 (07) : 205 - 259
  • [6] HYDROGEN-TERMINATED SI(100) SURFACES INVESTIGATED BY REFLECTANCE ANISOTROPY SPECTROSCOPY
    MULLER, AB
    REINHARDT, F
    RESCH, U
    RICHTER, W
    ROSE, KC
    ROSSOW, U
    THIN SOLID FILMS, 1993, 233 (1-2) : 19 - 23
  • [7] Spin-induced anomalous magnetoresistance at the (100) surface of hydrogen-terminated diamond
    Takahide, Yamaguchi
    Sasama, Yosuke
    Tanaka, Masashi
    Takeya, Hiroyuki
    Takano, Yoshihiko
    Kageura, Taisuke
    Kawarada, Hiroshi
    PHYSICAL REVIEW B, 2016, 94 (16)
  • [8] INFRARED-SPECTROSCOPY OF HYDROGEN-TERMINATED GALLIUM-ARSENIDE (100)
    GEE, PE
    HICKS, RF
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1992, 10 (04): : 892 - 896
  • [9] MESFETs and MOSFETs on hydrogen-terminated diamond surfaces
    Tsugawa, K
    Hokazono, A
    Noda, H
    Kitatani, K
    Morita, K
    Kawarada, H
    SILICON CARBIDE, III-NITRIDES AND RELATED MATERIALS, PTS 1 AND 2, 1998, 264-2 : 977 - 980
  • [10] Gas sensing properties of hydrogen-terminated diamond
    Helwig, A.
    Mueller, G.
    Garrido, J. A.
    Eickhoff, M.
    SENSORS AND ACTUATORS B-CHEMICAL, 2008, 133 (01) : 156 - 165