Fractional diffusion modeling of ion channel gating -: art. no. 051915

被引:102
|
作者
Goychuk, I [1 ]
Hänggi, P [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 05期
关键词
D O I
10.1103/PhysRevE.70.051915
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An anomalous diffusion model for ion channel gating is put forward. This scheme is able to describe nonexponential, power-law-like distributions of residence time intervals in several types of ion channels. Our method presents a generalization of the discrete diffusion model by Millhauser, Salpeter, and Oswald [Proc. Nail. Acad. Sci. U.S.A. 85, 1503 (1988)] to the case of a continuous, anomalous slow conformational diffusion. The corresponding generalization is derived from a continuous-time random walk composed of nearest-neighbor jumps which in the scaling limit results in a fractional diffusion equation. The studied model contains three parameters only: the mean residence time, a characteristic time of conformational diffusion, and the index of subdiffusion. A tractable analytical expression for the characteristic function of the residence time distribution is obtained. In the limiting case of normal diffusion, our prior findings [Proc. Nail. Acad. Sci. U.S.A. 99, 3552 (2002)] are reproduced. Depending on the chosen parameters, the fractional diffusion model exhibits a very rich behavior of the residence time distribution with different characteristic time regimes. Moreover, the corresponding autocorrelation function of conductance fluctuations displays nontrivial power law features. Our theoretical model is in good agreement with experimental data for large conductance potassium ion channels.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] General theory of heat diffusion dynamics -: art. no. 184110
    Tröster, A
    Schranz, W
    PHYSICAL REVIEW B, 2002, 66 (18): : 1 - 16
  • [32] Alleged acausality of the diffusion equations:: A reply -: art. no. 088504
    Kostädt, P
    Liu, M
    PHYSICAL REVIEW D, 2001, 64 (08):
  • [33] Nuclear friction and quantum mechanical diffusion -: art. no. 064304
    Radionov, S
    Åberg, S
    PHYSICAL REVIEW C, 2005, 71 (06):
  • [34] Compartmentalized reaction-diffusion systems -: art. no. 016211
    Chávez, F
    Kapral, R
    PHYSICAL REVIEW E, 2001, 63 (01): : 1 - 9
  • [35] Mechanical model of normal and anomalous diffusion -: art. no. 011102
    Kunz, H
    Livi, R
    Süto, A
    PHYSICAL REVIEW E, 2003, 67 (01):
  • [36] Tracer diffusion in granular shear flows -: art. no. 021308
    Garzó, V
    PHYSICAL REVIEW E, 2002, 66 (02): : 1 - 021308
  • [37] Another look at ππ scattering in the scalar channel -: art. no. 034005
    Igi, K
    Hikasa, K
    PHYSICAL REVIEW D, 1999, 59 (03):
  • [38] Subinertial flows and transports in Cozumel Channel -: art. no. 3037
    Chávez, G
    Candela, J
    Ochoa, J
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2003, 108 (C2)
  • [39] N=1 matter from fractional branes -: art. no. 010
    Marotta, R
    Nicodemi, F
    Pettorino, R
    Pezzella, F
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (09):
  • [40] PHYS 188-Dynamic modeling of ion channel gating
    Mashl, Robert J.
    Jakobsson, Eric
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234