Fractional diffusion modeling of ion channel gating -: art. no. 051915

被引:102
|
作者
Goychuk, I [1 ]
Hänggi, P [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 05期
关键词
D O I
10.1103/PhysRevE.70.051915
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An anomalous diffusion model for ion channel gating is put forward. This scheme is able to describe nonexponential, power-law-like distributions of residence time intervals in several types of ion channels. Our method presents a generalization of the discrete diffusion model by Millhauser, Salpeter, and Oswald [Proc. Nail. Acad. Sci. U.S.A. 85, 1503 (1988)] to the case of a continuous, anomalous slow conformational diffusion. The corresponding generalization is derived from a continuous-time random walk composed of nearest-neighbor jumps which in the scaling limit results in a fractional diffusion equation. The studied model contains three parameters only: the mean residence time, a characteristic time of conformational diffusion, and the index of subdiffusion. A tractable analytical expression for the characteristic function of the residence time distribution is obtained. In the limiting case of normal diffusion, our prior findings [Proc. Nail. Acad. Sci. U.S.A. 99, 3552 (2002)] are reproduced. Depending on the chosen parameters, the fractional diffusion model exhibits a very rich behavior of the residence time distribution with different characteristic time regimes. Moreover, the corresponding autocorrelation function of conductance fluctuations displays nontrivial power law features. Our theoretical model is in good agreement with experimental data for large conductance potassium ion channels.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Integrated Modeling concepts for OWL - art. no. 627101
    Mueller, Michael
    Koch, Franz
    Modeling, Systems Engineering, and Project Management for Astronomy II, 2006, 6271 : 27101 - 27101
  • [22] Modeling the evolution of weighted networks -: art. no. 066149
    Barrat, A
    Barthélemy, M
    Vespignani, A
    PHYSICAL REVIEW E, 2004, 70 (06)
  • [23] Accurately modeling the internet topology -: art. no. 066108
    Zhou, S
    Mondragón, RJ
    PHYSICAL REVIEW E, 2004, 70 (06)
  • [24] An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like -: art. no. 113512
    Pierantozzi, T
    Vázquez, L
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (11)
  • [25] First-principles study of Li ion diffusion in LiFePO4 -: art. no. 104303
    Ouyang, CY
    Shi, SQ
    Wang, ZX
    Huang, XJ
    Chen, LQ
    PHYSICAL REVIEW B, 2004, 69 (10)
  • [26] Impact of inhibitor diffusion in holographic photopolymers - art. no. 665703
    McLeod, Robert R.
    Grabowski, Matthew W.
    Cole, Michael C.
    ORGANIC 3D PHOTONICS MATERIALS AND DEVICES, 2007, 6657 : 65703 - 65703
  • [27] Diffusion of the magnetization profile in the XX model -: art. no. 066123
    Ogata, Y
    PHYSICAL REVIEW E, 2002, 66 (06): : 7
  • [28] Causality and stability of the relativistic diffusion equation -: art. no. 023003
    Kostädt, P
    Liu, M
    PHYSICAL REVIEW D, 2000, 62 (02) : 1 - 6
  • [29] Self-diffusion in liquid interfaces -: art. no. 095901
    Herth, S
    Ye, F
    Eggersmann, M
    Gutfleisch, O
    Würschum, R
    PHYSICAL REVIEW LETTERS, 2004, 92 (09) : 095901 - 1
  • [30] Monitoring of drug diffusion in ocular tissues - art. no. 616303
    Ghosn, Mohamad G.
    Cheng, Yezeng
    Larin, Kirill V.
    Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII, 2006, 6163 : 16303 - 16303