Fractional diffusion modeling of ion channel gating -: art. no. 051915

被引:102
|
作者
Goychuk, I [1 ]
Hänggi, P [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 05期
关键词
D O I
10.1103/PhysRevE.70.051915
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An anomalous diffusion model for ion channel gating is put forward. This scheme is able to describe nonexponential, power-law-like distributions of residence time intervals in several types of ion channels. Our method presents a generalization of the discrete diffusion model by Millhauser, Salpeter, and Oswald [Proc. Nail. Acad. Sci. U.S.A. 85, 1503 (1988)] to the case of a continuous, anomalous slow conformational diffusion. The corresponding generalization is derived from a continuous-time random walk composed of nearest-neighbor jumps which in the scaling limit results in a fractional diffusion equation. The studied model contains three parameters only: the mean residence time, a characteristic time of conformational diffusion, and the index of subdiffusion. A tractable analytical expression for the characteristic function of the residence time distribution is obtained. In the limiting case of normal diffusion, our prior findings [Proc. Nail. Acad. Sci. U.S.A. 99, 3552 (2002)] are reproduced. Depending on the chosen parameters, the fractional diffusion model exhibits a very rich behavior of the residence time distribution with different characteristic time regimes. Moreover, the corresponding autocorrelation function of conductance fluctuations displays nontrivial power law features. Our theoretical model is in good agreement with experimental data for large conductance potassium ion channels.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Patterns in syntactic dependency networks -: art. no. 051915
    Cancho, RFI
    Solé, RV
    Köhler, R
    PHYSICAL REVIEW E, 2004, 69 (05) : 8
  • [2] Kinetic modeling of ion conduction in KcsA potassium channel -: art. no. 204712
    Mafé, S
    Pellicer, J
    Cervera, J
    JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (20):
  • [3] Study of elastic constant ratios in nematic liquid crystals -: art. no. 051915
    Strömer, JF
    Raynes, EP
    Brown, CV
    APPLIED PHYSICS LETTERS, 2006, 88 (05) : 1 - 3
  • [4] Modeling diffusion of innovations in a social network -: art. no. 026121
    Guardiola, X
    Díaz-Guilera, A
    Pérez, CJ
    Arenas, A
    Llas, M
    PHYSICAL REVIEW E, 2002, 66 (02):
  • [5] Non-Markovian stochastic resonance:: Three-state model of ion channel gating -: art. no. 061906
    Goychuk, I
    Hänggi, P
    Vega, JL
    Miret-Artés, S
    PHYSICAL REVIEW E, 2005, 71 (06)
  • [6] Front propagation in hyperbolic fractional reaction-diffusion equations -: art. no. 057105
    Méndez, V
    Ortega-Cejas, V
    PHYSICAL REVIEW E, 2005, 71 (05):
  • [7] Anomalous ion accelerated bulk diffusion of interstitial nitrogen - art. no. 065901
    Abrasonis, G
    Möller, W
    Ma, XX
    PHYSICAL REVIEW LETTERS, 2006, 96 (06)
  • [8] Inhomogeneous big bang nucleosynthesis and mutual ion diffusion -: art. no. 043512
    Keihänen, E
    PHYSICAL REVIEW D, 2002, 66 (04)
  • [9] The role of conformational diffusion in ion channel gating
    Goychuk, I
    Hänggi, P
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 325 (1-2) : 9 - 18
  • [10] Microfluidic gating of an organic electrochemical transistor -: art. no. 013503
    Mabeck, JT
    DeFranco, JA
    Bernards, DA
    Malliaras, GG
    Hocdé, S
    Chase, CJ
    APPLIED PHYSICS LETTERS, 2005, 87 (01)