Bayesian predictive probability functions for count data that are subject to misclassification

被引:7
|
作者
Stamey, JA [1 ]
Young, DM
Bratcher, TL
机构
[1] Stephen F Austin State Univ, Dept Math & Stat, Nacogdoches, TX 75962 USA
[2] Baylor Univ, Dept Stat Sci, Waco, TX 76798 USA
关键词
Poisson distribution; binomial distribution; false-positive observations; false-negative observations;
D O I
10.1002/bimj.200410059
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop three Bayesian predictive probability functions based on data in the form of a double sample. One Bayesian predictive probability function is for predicting the true unobservable count of interest in a future sample for a Poisson model with data subject to misclassification and two Bayesian predictive probability functions for predicting the number of misclassified counts in a current observable fallible count for an event of interest. We formulate a Gibbs sampler to calculate prediction intervals for these three unobservable random variables and apply our new predictive models to calculate prediction intervals for a real-data example.
引用
收藏
页码:572 / 578
页数:7
相关论文
共 50 条
  • [1] Bayesian Correction for Misclassification in Multilevel Count Data Models
    Nelson, Tyler
    Song, Joon Jin
    Chin, Yoo-Mi
    Stamey, James D.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2018, 2018
  • [2] A Bayesian Approach to Account for Misclassification and Overdispersion in Count Data
    Wu, Wenqi
    Stamey, James
    Kahle, David
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2015, 12 (09): : 10648 - 10661
  • [3] Bayesian analysis of complementary Poisson rate parameters with data subject to misclassification
    Stamey, JD
    Seaman, JW
    Young, DM
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 134 (01) : 36 - 48
  • [4] Probability of misclassification in Bayesian hierarchical classifier
    Burduk, R
    Intelligent Information Processing and Web Mining, Proceedings, 2005, : 341 - 348
  • [5] Bayesian predictive inference for time series count data
    Chen, MH
    Ibrahim, JG
    BIOMETRICS, 2000, 56 (03) : 678 - 685
  • [6] Bayesian estimation of bandwidth in semiparametric kernel estimation of unknown probability mass and regression functions of count data
    Tristan Senga Kiessé
    Nabil Zougab
    Célestin C. Kokonendji
    Computational Statistics, 2016, 31 : 189 - 206
  • [7] Bayesian estimation of bandwidth in semiparametric kernel estimation of unknown probability mass and regression functions of count data
    Kiesse, Tristan Senga
    Zougab, Nabil
    Kokonendji, Celestin C.
    COMPUTATIONAL STATISTICS, 2016, 31 (01) : 189 - 206
  • [8] Bayesian sample size determination for estimating binomial parameters from data subject to misclassification
    Rahme, E
    Joseph, L
    Gyorkos, TW
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2000, 49 : 119 - 128
  • [9] Misclassification probability estimations for linear decision functions
    Nedel'ko, VM
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2004, 3138 : 780 - 787
  • [10] Bayesian identifiability and misclassification in multinomial data
    Swartz, T
    Haitovsky, Y
    Vexler, A
    Yang, T
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2004, 32 (03): : 285 - 302