Integrated 3D motion analysis with functional magnetic resonance neuroimaging to identify neural correlates of lower extremity movement

被引:10
|
作者
Anand, Manish [1 ,2 ]
Diekfuss, Jed A. [1 ,2 ,6 ]
Slutsky-Ganesh, Alexis B. [3 ]
Grooms, Dustin R. [4 ,5 ,10 ]
Bonnette, Scott [1 ]
Foss, Kim D. Barber [1 ,2 ]
DiCesare, Christopher A. [1 ]
Hunnicutt, Jennifer L. [6 ]
Myer, Gregory D. [1 ,2 ,6 ,7 ,8 ,9 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Div Sports Med, SPORT Ctr, Cincinnati, OH 45229 USA
[2] Emory Sports Performance & Res Ctr, Flowery Branch, GA 30542 USA
[3] Univ N Carolina, Dept Kinesiol, Greensboro, NC USA
[4] Ohio Univ, Ohio Musculoskeletal & Neurol Inst, Athens, OH 45701 USA
[5] Ohio Univ, Coll Hlth Sci & Profess, Sch Appl Hlth Sci & Wellness, Div Athlet Training, Athens, OH 45701 USA
[6] Emory Univ, Emory Sch Med, Dept Orthopaed, Atlanta, GA 30322 USA
[7] Emory Sports Med Ctr, Atlanta, GA USA
[8] Univ Cincinnati, Dept Pediat & Orthopaed Surg, Cincinnati, OH USA
[9] Micheli Ctr Sports Injury Prevent, Waltham, MA USA
[10] Ohio Univ, Coll Hlth Sci & Profess, Sch Rehabil & Commun Sci, Div Phys Therapy,Grover Ctr, Athens, OH 45701 USA
基金
美国国家卫生研究院;
关键词
fMRI; Motion capture; Knee biomechanics; ACL; Neural correlates; ANTERIOR CRUCIATE LIGAMENT; BIOMECHANICAL MEASURES; ANKLE DORSIFLEXION; ARTIFACT REMOVAL; INJURY RISK; ROBUST; GAIT; PERFORMANCE; ACTIVATION; WALKING;
D O I
10.1016/j.jneumeth.2021.109108
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: To better understand the neural drivers of aberrant motor control, methods are needed to identify whole brain neural correlates of isolated joints during multi-joint lower-extremity coordinated movements. This investigation aimed to identify the neural correlates of knee kinematics during a unilateral leg press task. New Method: The current study utilized an MRI-compatible motion capture system in conjunction with a lower extremity unilateral leg press task during fMRI. Knee joint kinematics and brain activity were collected concurrently and averaged range of motion were modeled as covariates to determine the neural substrates of knee out-of-plane (frontal) and in-plane (sagittal) range of motion. Results: Increased out-of-plane (frontal) range of motion was associated with altered brain activity in regions important for attention, sensorimotor control, and sensorimotor integration (z >3.1, p < .05), but no such correlates were found with in-plane (sagittal) range of motion (z >3.1, p > .05). Comparison with Existing Method(s): Previous studies have either presented overall brain activation only, or utilized biomechanical data collected outside MRI in a standard biomechanics lab for identifying single-joint neural correlates. Conclusions: The study shows promise for the MRI-compatible system to capture lower-extremity biomechanical data collected concurrently during fMRI, and the present data identified potentially unique neural drivers of aberrant biomechanics. Future research can adopt these methods for patient populations with CNS-related movement disorders to identify single-joint kinematic neural correlates that may adjunctively supplement brain-body therapeutic approaches.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Spectrometry by 3D integrated magnetic resonance as new key-volumes for glioblastoma radiotherapy
    Ken, S.
    Franceries, X.
    Lotterie, J-A
    Lubrano, V
    Catalaa, I
    Vieillevigne, L.
    Berry, I
    Cassol, E.
    Delannes, M.
    Celsis, P.
    Cohen-Jonathan, Moyal E.
    Laprie, A.
    BULLETIN DU CANCER, 2010, 97 : S55 - S56
  • [32] Multicompartment Mesenchymal Tissue Analysis of Spontaneous Lower Extremity Fractures using 3D Computed Tomography
    Narayanan, A.
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2018, 66 : S294 - S295
  • [33] Quantitative 3D Magnetic Resonance Elastography: Comparison With Dynamic Mechanical Analysis
    Arunachalam, Shivaram P.
    Rossman, Phillip J.
    Arani, Arvin
    Lake, David S.
    Glaser, Kevin J.
    Trzasko, Joshua D.
    Manduca, Armando
    McGee, Kiaran P.
    Ehman, Richard L.
    Araoz, Philip A.
    MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (03) : 1184 - 1192
  • [34] Automated Skull Stripping in Mouse Functional Magnetic Resonance Imaging Analysis Using 3D U-Net
    Ruan, Guohui
    Liu, Jiaming
    An, Ziqi
    Wu, Kaiibin
    Tong, Chuanjun
    Liu, Qiang
    Liang, Ping
    Liang, Zhifeng
    Chen, Wufan
    Zhang, Xinyuan
    Feng, Yanqiu
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [35] Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model
    Amira Soliman
    Jose R. Chang
    Kobra Etminani
    Stefan Byttner
    Anette Davidsson
    Begoña Martínez-Sanchis
    Valle Camacho
    Matteo Bauckneht
    Roxana Stegeran
    Marcus Ressner
    Marc Agudelo-Cifuentes
    Andrea Chincarini
    Matthias Brendel
    Axel Rominger
    Rose Bruffaerts
    Rik Vandenberghe
    Milica G. Kramberger
    Maja Trost
    Nicolas Nicastro
    Giovanni B. Frisoni
    Afina W. Lemstra
    Bart N. M. van Berckel
    Andrea Pilotto
    Alessandro Padovani
    Silvia Morbelli
    Dag Aarsland
    Flavio Nobili
    Valentina Garibotto
    Miguel Ochoa-Figueroa
    BMC Medical Informatics and Decision Making, 22
  • [36] Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model
    Soliman, Amira
    Chang, Jose R.
    Etminani, Kobra
    Byttner, Stefan
    Davidsson, Anette
    Martinez-Sanchis, Begona
    Camacho, Valle
    Bauckneht, Matteo
    Stegeran, Roxana
    Ressner, Marcus
    Agudelo-Cifuentes, Marc
    Chincarini, Andrea
    Brendel, Matthias
    Rominger, Axel
    Bruffaerts, Rose
    Vandenberghe, Rik
    Kramberger, Milica G.
    Trost, Maja
    Nicastro, Nicolas
    Frisoni, Giovanni B.
    Lemstra, Afina W.
    van Berckel, Bart N. M.
    Pilotto, Andrea
    Padovani, Alessandro
    Morbelli, Silvia
    Aarsland, Dag
    Nobili, Flavio
    Garibotto, Valentina
    Ochoa-Figueroa, Miguel
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (SUPPL 6)
  • [37] Validation of 3D video automatic analysis to identify rapid eye movement sleep behavior disorder
    Cesari, M.
    Ruzicka, L.
    Hoegl, B.
    Ibrahim, A.
    Holzknecht, E.
    Bergmann, M.
    Brandauer, E.
    Heidbreder, A.
    Garn, H.
    Kohn, B.
    Stefani, A.
    JOURNAL OF SLEEP RESEARCH, 2022, 31
  • [38] Lower limb functional outcome assessment following burn injury: A novel use for 3D laboratory-based movement analysis
    Grisbrook, T. L.
    Reid, S. L.
    Elliott, C. M.
    Elliott, B. C.
    Edgar, D. W.
    Wood, F. M.
    BURNS, 2010, 36 (03) : E24 - E30
  • [39] 3D digital analysis of magnetic force-driven orthodontic tooth movement
    Kuwajima, Yukinori
    Ishida, Yoshiki
    Lee, Cliff
    Mayama, Hisayo
    Satoh, Kazuro
    Ishikawa-Nagai, Shigemi
    HELIYON, 2019, 5 (11)
  • [40] Neural correlates of viewing paintings: Evidence from a quantitative meta-analysis of functional magnetic resonance imaging data
    Vartanian, Oshin
    Skov, Martin
    BRAIN AND COGNITION, 2014, 87 : 52 - 56