Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model

被引:3
|
作者
Soliman, Amira [1 ]
Chang, Jose R. [1 ,2 ]
Etminani, Kobra [1 ]
Byttner, Stefan [1 ]
Davidsson, Anette [3 ]
Martinez-Sanchis, Begona [4 ]
Camacho, Valle [5 ]
Bauckneht, Matteo [6 ]
Stegeran, Roxana [7 ]
Ressner, Marcus [8 ]
Agudelo-Cifuentes, Marc [4 ]
Chincarini, Andrea [9 ]
Brendel, Matthias [10 ]
Rominger, Axel [11 ]
Bruffaerts, Rose [26 ]
Vandenberghe, Rik [12 ,13 ]
Kramberger, Milica G. [14 ]
Trost, Maja [14 ,15 ]
Nicastro, Nicolas [16 ]
Frisoni, Giovanni B. [17 ]
Lemstra, Afina W. [18 ]
van Berckel, Bart N. M. [19 ]
Pilotto, Andrea [20 ]
Padovani, Alessandro [6 ]
Morbelli, Silvia [21 ]
Aarsland, Dag [22 ,27 ]
Nobili, Flavio [22 ]
Garibotto, Valentina [23 ,24 ]
Ochoa-Figueroa, Miguel [3 ,7 ,25 ]
机构
[1] Halmstad Univ, Ctr Appl Intelligent Syst Res CAISR, Halmstad, Sweden
[2] Natl Cheng Kung Univ Tainan, Taipei, Taiwan
[3] Inst Med & Hlth Sci, Dept Clin Physiol, Linkoping, Sweden
[4] La Fe Univ Hosp, Dept Nucl Med, Med Imaging Area, Valencia, Spain
[5] Univ Autonoma Barcelona, Serv Med Nucl, Hosp Santa Creu & St Pau, Barcelona, Spain
[6] IRCCS Osped Policlin San Martino, Nucl Med Unit, Genoa, Italy
[7] Linkoping Univ Hosp, Dept Diagnost Radiol, Linkoping, Sweden
[8] Linkoping Univ Hosp, Dept Med Phys, Linkoping, Sweden
[9] Natl Inst Nucl Phys INFN, Genoa Sect, Genoa, Italy
[10] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Nucl Med, Munich, Germany
[11] Univ Hosp Bern, Dept Nucl Med, Inselspital, Bern, Switzerland
[12] KU, Lab Cognit Neurol, Dept Neurosci, Leuven, Belgium
[13] Univ Hosp Leuven, Neurol Dept, Leuven, Belgium
[14] Univ Med Ctr, Dept Neurol, Ljubljana, Slovenia
[15] Univ Ljubljana, Fac Med, Ljubljana, Slovenia
[16] Geneva Univ Hosp, Dept Clin Neurosci, Geneva, Switzerland
[17] Univ Hosp, Dept Psychiat, LANVIE Lab Neuroimagerie Vieillissement, Geneva, Switzerland
[18] VU Med Ctr Alzheimer Ctr, Amsterdam, Netherlands
[19] Vrije Univ Amsterdam, Dept Radiol & Nucl Med, Amsterdam UMC, Amsterdam Neurosci, Amsterdam, Netherlands
[20] Univ Brescia, Dept Clin & Expt Sci, Neurol Unit, Brescia, Italy
[21] Stavanger Univ Hosp, Ctr Age Related Med SESAM, Stavanger, Norway
[22] Univ Genoa, Dept Neurosci DINOGMI, Genoa, Italy
[23] Univ Geneva, Univ Hosp, Div Nucl Med & Mol Imaging, Geneva, Switzerland
[24] Univ Geneva, NIMTLab, Geneva, Switzerland
[25] Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden
[26] Univ Antwerp, Dept Biomed Sci, Antwerp, Belgium
[27] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Old Age Psychiat, London, England
基金
瑞士国家科学基金会;
关键词
Convolution Neural Networks; Transfer Learning; Brain Neurodegenerative Disorders; Medical Image Classification; LEWY BODIES; DEMENTIA; PREVALENCE; DIAGNOSIS; BRAIN;
D O I
10.1186/s12911-022-02054-7
中图分类号
R-058 [];
学科分类号
摘要
Background: In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually challenged by lack of labeled data. To address this challenge, transfer learning (TL) has been applied to use state-of-the-art convolution neural networks pre-trained on natural images. Yet, there are differences in characteristics between medical and natural images, also image classification and targeted medical diagnosis tasks. The purpose of this study is to investigate the performance of specialized and TL in the classification of neurodegenerative disorders using 3D volumes of 18F-FDG-PET brain scans. Results: Results show that TL models are suboptimal for classification of neurodegenerative disorders, especially when the objective is to separate more than two disorders. Additionally, specialized CNN model provides better interpretations of predicted diagnosis. Conclusions: TL can indeed lead to superior performance on binary classification in timely and data efficient manner, yet for detecting more than a single disorder, TL models do not perform well. Additionally, custom 3D model performs comparably to TL models for binary classification, and interestingly perform better for diagnosis of multiple disorders. The results confirm the superiority of the custom 3D-CNN in providing better explainable model compared to TL adopted ones.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model
    Amira Soliman
    Jose R. Chang
    Kobra Etminani
    Stefan Byttner
    Anette Davidsson
    Begoña Martínez-Sanchis
    Valle Camacho
    Matteo Bauckneht
    Roxana Stegeran
    Marcus Ressner
    Marc Agudelo-Cifuentes
    Andrea Chincarini
    Matthias Brendel
    Axel Rominger
    Rose Bruffaerts
    Rik Vandenberghe
    Milica G. Kramberger
    Maja Trost
    Nicolas Nicastro
    Giovanni B. Frisoni
    Afina W. Lemstra
    Bart N. M. van Berckel
    Andrea Pilotto
    Alessandro Padovani
    Silvia Morbelli
    Dag Aarsland
    Flavio Nobili
    Valentina Garibotto
    Miguel Ochoa-Figueroa
    BMC Medical Informatics and Decision Making, 22
  • [2] FCNet: Flower Classification Using Custom-Made Convolution Neural Network and Transfer Learning
    Vardiyani, Roma
    Sahu, Satya Prakash
    PROCEEDINGS OF EMERGING TRENDS AND TECHNOLOGIES ON INTELLIGENT SYSTEMS (ETTIS 2021), 2022, 1371 : 115 - 125
  • [3] 3D Garment Design Model Based on Convolution Neural Network and Virtual Reality
    Liu Fengyi
    Liu, Siru
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [4] A 3D ray traced biological neural network learning model
    Yuen, Brosnan
    Dong, Xiaodai
    Lu, Tao
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] A Hybrid 2D and 3D Convolution Neural Network for Stereo Matching
    Zeng, Xuan
    Li, Yewen
    Chen, Ziqian
    Zhu, Liping
    2018 21ST IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2018), 2018, : 152 - 156
  • [6] 3D Anisotropic Convolutional Neural Network with Step Transfer Learning for Liver Segmentation
    Pan, Xiaoying
    Zhang, Zhe
    Zhang, Yuping
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON COMMUNICATION AND INFORMATION PROCESSING (ICCIP 2018), 2018, : 86 - 90
  • [7] Recognition of speech emotion using custom 2D-convolution neural network deep learning algorithm
    Zvarevashe, Kudakwashe
    Olugbara, Oludayo O.
    INTELLIGENT DATA ANALYSIS, 2020, 24 (05) : 1065 - 1086
  • [8] Preliminary geological mapping with convolution neural network using statistical data augmentation on a 3D model
    Cedou, Matthieu
    Gloaguen, Erwan
    Blouin, Martin
    Cate, Antoine
    Paiement, Jean-Philippe
    Tirdad, Shiva
    COMPUTERS & GEOSCIENCES, 2022, 167
  • [9] Transfer Learning-Based Convolution Neural Network Model for Hand Gesture Recognition
    Kumari, Niranjali
    Joshi, Garima
    Kaur, Satwinder
    Vig, Renu
    THIRD CONGRESS ON INTELLIGENT SYSTEMS, CIS 2022, VOL 1, 2023, 608 : 827 - 840
  • [10] Building a Custom Crime Detection Dataset and Implementing a 3D Convolutional Neural Network for Video Analysis
    Lopera, Juan Camilo Londono
    Martinez, Freddy Bolanos
    Bocanegra, Luis Alejandro Fletscher
    ALGORITHMS, 2025, 18 (02)