Optimal control of the viscous generalized Camassa-Holm equation

被引:16
|
作者
Shen, Chunyu [1 ,2 ]
Gao, Anna [2 ]
Tian, Lixin [2 ]
机构
[1] Jiangsu Univ, Dept Student Affairs, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Fac Sci, Nonlinear Sci Res Ctr, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
Viscous generalized Camassa-Holm equation; Optimal control; Optimal solution; SHALLOW-WATER EQUATION; GLOBAL WEAK SOLUTIONS; WELL-POSEDNESS; BURGERS-EQUATION; SOLITARY WAVES; GEODESIC-FLOW; STABILITY; EXISTENCE; MODEL; DECOMPOSITION;
D O I
10.1016/j.nonrwa.2009.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the optimal control problem for the viscous generalized Camassa-Holm equation. We deduce the existence and uniqueness of weak solution to the viscous generalized Camassa-Holm equation in a short interval by using Galerkin method. Then, by using optimal control theories and distributed parameter system control theories, the optimal control of the viscous generalized Camassa-Holm equation under boundary condition is given and the existence of optimal solution to the viscous generalized Camassa-Holm equation is proved (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1835 / 1846
页数:12
相关论文
共 50 条
  • [31] Time periodic solution of the viscous Camassa-Holm equation
    Fu, YP
    Guo, BL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 313 (01) : 311 - 321
  • [32] Global weak solutions for a generalized Camassa-Holm equation
    Tu, Xi
    Yin, Zhaoyang
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (16) : 2457 - 2475
  • [33] Existence and nonexistence of solutions for the generalized Camassa-Holm equation
    Pan Xiujuan
    Shin Min Kang
    Young Chel Kwun
    Advances in Difference Equations, 2014
  • [34] Global well-posedness for the viscous Camassa-Holm equation
    Lim, Wee Keong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) : 432 - 442
  • [35] Self-adjointness of a generalized Camassa-Holm equation
    Ibragimov, N. H.
    Khamitova, R. S.
    Valenti, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2579 - 2583
  • [36] THE EXISTENCE OF WEAK SOLUTIONS FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Lai, Shaoyong
    Xie, Qichang
    Guo, Yunxi
    Wu, YongHong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) : 45 - 57
  • [37] THE GLOBAL CONSERVATIVE SOLUTIONS FOR THE GENERALIZED CAMASSA-HOLM EQUATION
    Yang, Li
    Mu, Chunlai
    Zhou, Shouming
    Tu, Xinyu
    ELECTRONIC RESEARCH ARCHIVE, 2019, 27 : 37 - 67
  • [38] On the Study of Local Solutions for a Generalized Camassa-Holm Equation
    Wu, Meng
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [39] An optimal control problem of the 3D viscous Camassa-Holm equations
    Cung The Anh
    Dang Thanh Son
    OPTIMIZATION, 2021, 70 (01) : 3 - 25
  • [40] NOISE EFFECT IN A STOCHASTIC GENERALIZED CAMASSA-HOLM EQUATION
    Miao, Yingting
    Wang, Zhenzhen
    Zhao, Yongye
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (10) : 3529 - 3558