Predicting quality, texture and chemical content of yam (Dioscorea alata L.) tubers using near infrared spectroscopy

被引:10
|
作者
Ehounou, Adou Emmanuel [1 ,2 ]
Cornet, Denis [3 ,4 ]
Desfontaines, Lucienne [5 ]
Marie-Magdeleine, Carine [6 ]
Maledon, Erick [4 ]
Nudol, Elie [4 ,7 ]
Beurier, Gregory [3 ,4 ]
Rouan, Lauriane [3 ,4 ]
Brat, Pierre [4 ,8 ]
Lechaudel, Mathieu [8 ]
Nous, Camille [9 ]
N'Guetta, Assanvo Simon Pierre [1 ,2 ]
Kouakou, Amani Michel [2 ]
Arnau, Gemma [4 ,7 ]
机构
[1] Univ Felix Houphou & Boigny, UFR Biosci, Abidjan, Cote Ivoire
[2] CNRA, Stn Rech Cultures Vivrieres, Bouake, Cote Ivoire
[3] CIRAD, UMR AGAP Inst, F-34398 Montpellier, France
[4] Univ Montpellier, UMR AGAP Inst, Inst Agro, CIRAD,INRAE, F-34398 Montpellier, France
[5] Ctr Rech Antilles Guyane, INRAE, ASTRO Agrosyst Tropicaux, UR 1321, Petit Bourg, Guadeloupe, France
[6] Ctr Rech Antilles Guyane, INRAE, UR 0143, URZ Unite Recherches Zootech, Petit Bourg, Guadeloupe, France
[7] UMR AGAP Inst, CIRAD, Petit Bourg, Guadeloupe, France
[8] CIRAD, UMR Qualisud, Capesterre Belle Eau, Guadeloupe, France
[9] Lab Cogitamus, Montpellier, France
关键词
Yam (Dioscorea alata L; quality; texture; near infrared spectrometry; convolutional neural network;
D O I
10.1177/09670335211007575
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Despite the importance of yam (Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%), high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R-2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R-2 < 0.58). Conversely, convolutional neural network classification models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%, respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results allow for an efficient screening toolbox for quality traits in yams.
引用
收藏
页码:128 / 139
页数:12
相关论文
共 50 条
  • [31] Near-infrared reflectance spectroscopy for predicting chemical, instrumental and sensory quality of beef
    Ripoll, G.
    Alberti, P.
    Panea, B.
    Olleta, J. L.
    Sanudo, C.
    MEAT SCIENCE, 2008, 80 (03) : 697 - 702
  • [32] Predicting the nutritional quality of feed ingredients for pigs using near-infrared spectroscopy (NIRS) and chemical analysis
    van Barneveld, R. J.
    Graham, H.
    Diffey, S.
    ANIMAL PRODUCTION SCIENCE, 2018, 58 (04) : 709 - 718
  • [33] Predicting wheat quality characteristics and functionality using near-infrared spectroscopy
    Dowell, F. E.
    Maghirang, E. B.
    Xie, F.
    Lookhart, G. L.
    Pierce, R. O.
    Seabourn, B. W.
    Bean, S. R.
    Wilson, J. D.
    Chung, O. K.
    CEREAL CHEMISTRY, 2006, 83 (05) : 529 - 536
  • [34] Grain quality determination by means of near infrared spectroscopy in Jatropha curcas L.
    Montes, J.M.
    Technow, F.
    Bohlinger, B.
    Becker, K.
    Industrial Crops and Products, 2013, 43 (01) : 301 - 305
  • [35] Grain quality determination by means of near infrared spectroscopy in Jatropha curcas L.
    Montes, J. M.
    Technow, F.
    Bohlinger, B.
    Becker, K.
    INDUSTRIAL CROPS AND PRODUCTS, 2013, 43 : 301 - 305
  • [36] Predicting starch content in cassava fresh roots using near-infrared spectroscopy
    Mbanjo, Edwige Gaby Nkouaya
    Hershberger, Jenna
    Peteti, Prasad
    Agbona, Afolabi
    Ikpan, Andrew
    Ogunpaimo, Kayode
    Kayondo, Siraj Ismail
    Abioye, Racheal Smart
    Nafiu, Kehinde
    Alamu, Emmanuel Oladeji
    Adesokan, Michael
    Maziya-Dixon, Busie
    Parkes, Elizabeth
    Kulakow, Peter
    Gore, Michael A. A.
    Egesi, Chiedozie
    Rabbi, Ismail Yusuf
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [37] Predicting of intramuscular fat content in pork using near infrared spectroscopy and multivariate analysis
    Fan, Yuxia
    Liao, Yitao
    Cheng, Fang
    INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 2018, 21 (01) : 1180 - 1189
  • [38] Estimation of Cadmium Content in Lactuca sativa L. Leaves Using Visible-Near-Infrared Spectroscopy Technology
    Zhou, Lina
    Zhou, Leijinyu
    Wu, Hongbo
    Jing, Tingting
    Li, Tianhao
    Li, Jinsheng
    Kong, Lijuan
    Chen, Limei
    AGRONOMY-BASEL, 2024, 14 (04):
  • [39] Predicting Loquat Quality Using Visible, Near Infrared Spectroscopy and Artificial Neural Network
    Tmimi, Youssef
    Srata, Loubna
    Farres, Sofia
    Chikri, Mounim
    Fethi, Fouad
    DIGITAL TECHNOLOGIES AND APPLICATIONS, ICDTA 2024, VOL 3, 2024, 1100 : 3 - 12
  • [40] Accuracy of Predicting the Moisture Content of Three Types of Wood Sections Using Near Infrared Spectroscopy
    Kurata, Yohei
    BIORESOURCES, 2018, 13 (04): : 8444 - 8454