Predicting quality, texture and chemical content of yam (Dioscorea alata L.) tubers using near infrared spectroscopy

被引:10
|
作者
Ehounou, Adou Emmanuel [1 ,2 ]
Cornet, Denis [3 ,4 ]
Desfontaines, Lucienne [5 ]
Marie-Magdeleine, Carine [6 ]
Maledon, Erick [4 ]
Nudol, Elie [4 ,7 ]
Beurier, Gregory [3 ,4 ]
Rouan, Lauriane [3 ,4 ]
Brat, Pierre [4 ,8 ]
Lechaudel, Mathieu [8 ]
Nous, Camille [9 ]
N'Guetta, Assanvo Simon Pierre [1 ,2 ]
Kouakou, Amani Michel [2 ]
Arnau, Gemma [4 ,7 ]
机构
[1] Univ Felix Houphou & Boigny, UFR Biosci, Abidjan, Cote Ivoire
[2] CNRA, Stn Rech Cultures Vivrieres, Bouake, Cote Ivoire
[3] CIRAD, UMR AGAP Inst, F-34398 Montpellier, France
[4] Univ Montpellier, UMR AGAP Inst, Inst Agro, CIRAD,INRAE, F-34398 Montpellier, France
[5] Ctr Rech Antilles Guyane, INRAE, ASTRO Agrosyst Tropicaux, UR 1321, Petit Bourg, Guadeloupe, France
[6] Ctr Rech Antilles Guyane, INRAE, UR 0143, URZ Unite Recherches Zootech, Petit Bourg, Guadeloupe, France
[7] UMR AGAP Inst, CIRAD, Petit Bourg, Guadeloupe, France
[8] CIRAD, UMR Qualisud, Capesterre Belle Eau, Guadeloupe, France
[9] Lab Cogitamus, Montpellier, France
关键词
Yam (Dioscorea alata L; quality; texture; near infrared spectrometry; convolutional neural network;
D O I
10.1177/09670335211007575
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Despite the importance of yam (Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%), high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R-2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R-2 < 0.58). Conversely, convolutional neural network classification models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%, respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results allow for an efficient screening toolbox for quality traits in yams.
引用
收藏
页码:128 / 139
页数:12
相关论文
共 50 条
  • [21] Genetic diversity analysis in greater yam (Dioscorea alata L.) native to India using morphological and molecular markers
    Sheela, M. N.
    Abhilash, P. V.
    Asha, K. I.
    Arnau, G.
    XXIX INTERNATIONAL HORTICULTURAL CONGRESS ON HORTICULTURE: SUSTAINING LIVES, LIVELIHOODS AND LANDSCAPES (IHC2014): INTERNATIONAL SYMPOSIUM ON ROOT AND TUBER CROPS: SUSTAINING LIVES AND LIVELIHOODS INTO THE FUTURE, 2016, 1118 : 51 - 57
  • [22] Predicting moisture content of yellow-poplar (Liriodendron tulipifera L.) veneer using near infrared spectroscopy
    Adedipe, Oluwatosin Emmanuel
    Dawson-Andoh, Ben
    FOREST PRODUCTS JOURNAL, 2008, 58 (04) : 28 - 33
  • [23] Rapid analysis of starch, sugar, and amylose in fresh yam tubers and boiled yam texture using near-infrared hyperspectral imaging and chemometrics
    Adesokan, Michael
    Alamu, Emmanuel Oladeji
    Otegbayo, Bolanle
    Asfaw, Asrat
    Afolabi, Michael Olutoyin
    Fawole, Segun
    Meghar, Karima
    Dufour, Dominique
    Ayetigbo, Oluwatoyin
    Davrieux, Fabrice
    Maziya-Dixon, Busie
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2025, 142
  • [24] Nondestructive determination of sugar content in potato tubers using visible and near infrared spectroscopy
    Chen J.Y.
    Zhang H.
    Miao Y.
    Asakura M.
    Japan Journal of Food Engineering, 2010, 11 (01) : 59 - 64
  • [25] Unravelling the genetic diversity of water yam (Dioscorea alata L.) accessions from Tanzania using simple sequence repeat (SSR) markers
    Massawe, Joseph Innocent
    Temu, Gladness Elibariki
    PLOS ONE, 2023, 18 (05):
  • [26] Genetic Diversity Analysis of Greater Yam ( Dioscorea alata L.) Collections Using Tuber Morphology and Simple Sequence Repeats (SSR) Markers
    Ravelo, Junelyn B.
    Batalon, Lara Jaaziel
    Lalusin, Antonio G.
    PHILIPPINE AGRICULTURAL SCIENTIST, 2024, 107 (02): : 122 - 132
  • [27] Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy
    Sinelli, Nicoletta
    Spinardi, Anna
    Di Egidio, Valentina
    Mignani, Ilaria
    Casiraghi, Ernestina
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2008, 50 (01) : 31 - 36
  • [28] Hypoglycemic effect of crude water soluble polysaccharide extracted from tubers of purple and yellow water yam (Dioscorea alata L.) on alloxan-induced hyperglycemia Wistar rats
    Estiasih, Teti
    Umaro, Donny
    Harijino
    PROGRESS IN NUTRITION, 2018, 20 : 59 - 67
  • [29] Predicting the digestible energy content of cereals for pigs using near infrared spectroscopy
    Kruk, JA
    van Barneveld, RJ
    MANIPULATING PIG PRODUCTION VII, PROCEEDINGS, 1999, 7 : 265 - 265
  • [30] Predicting terpene content in dried conifer shoots using near infrared spectroscopy
    Champagne, Emilie
    Bonin, Michael
    Royo, Alejandro A.
    Tremblay, Jean-Pierre
    Raymond, Patricia
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2020, 28 (5-6) : 308 - 314