Predicting quality, texture and chemical content of yam (Dioscorea alata L.) tubers using near infrared spectroscopy

被引:10
|
作者
Ehounou, Adou Emmanuel [1 ,2 ]
Cornet, Denis [3 ,4 ]
Desfontaines, Lucienne [5 ]
Marie-Magdeleine, Carine [6 ]
Maledon, Erick [4 ]
Nudol, Elie [4 ,7 ]
Beurier, Gregory [3 ,4 ]
Rouan, Lauriane [3 ,4 ]
Brat, Pierre [4 ,8 ]
Lechaudel, Mathieu [8 ]
Nous, Camille [9 ]
N'Guetta, Assanvo Simon Pierre [1 ,2 ]
Kouakou, Amani Michel [2 ]
Arnau, Gemma [4 ,7 ]
机构
[1] Univ Felix Houphou & Boigny, UFR Biosci, Abidjan, Cote Ivoire
[2] CNRA, Stn Rech Cultures Vivrieres, Bouake, Cote Ivoire
[3] CIRAD, UMR AGAP Inst, F-34398 Montpellier, France
[4] Univ Montpellier, UMR AGAP Inst, Inst Agro, CIRAD,INRAE, F-34398 Montpellier, France
[5] Ctr Rech Antilles Guyane, INRAE, ASTRO Agrosyst Tropicaux, UR 1321, Petit Bourg, Guadeloupe, France
[6] Ctr Rech Antilles Guyane, INRAE, UR 0143, URZ Unite Recherches Zootech, Petit Bourg, Guadeloupe, France
[7] UMR AGAP Inst, CIRAD, Petit Bourg, Guadeloupe, France
[8] CIRAD, UMR Qualisud, Capesterre Belle Eau, Guadeloupe, France
[9] Lab Cogitamus, Montpellier, France
关键词
Yam (Dioscorea alata L; quality; texture; near infrared spectrometry; convolutional neural network;
D O I
10.1177/09670335211007575
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Despite the importance of yam (Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%), high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R-2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R-2 < 0.58). Conversely, convolutional neural network classification models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%, respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results allow for an efficient screening toolbox for quality traits in yams.
引用
收藏
页码:128 / 139
页数:12
相关论文
共 50 条
  • [1] Convolutional neural network allows amylose content prediction in yam (Dioscorea alata L.) flour using near infrared spectroscopy
    Houngbo, Mahugnon Ezekiel
    Desfontaines, Lucienne
    Diman, Jean-Louis
    Arnau, Gemma
    Mestres, Christian
    Davrieux, Fabrice
    Rouan, Lauriane
    Beurier, Gregory
    Marie-Magdeleine, Carine
    Meghar, Karima
    Alamu, Emmanuel Oladeji
    Otegbayo, Bolanle O.
    Cornet, Denis
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2024, 104 (08) : 4915 - 4921
  • [2] Physico-chemical characterisation of yam (Dioscorea alata L.) tubers from Vanuatu
    Lebot, V.
    Malapa, R.
    Molisale, T.
    Marchand, J. L.
    GENETIC RESOURCES AND CROP EVOLUTION, 2006, 53 (06) : 1199 - 1208
  • [3] Physico-chemical characterisation of yam (Dioscorea alata L.) tubers from Vanuatu
    V. Lebot
    R. Malapa
    T. Molisale
    J.L. Marchand
    Genetic Resources and Crop Evolution, 2006, 53 : 1199 - 1208
  • [4] Chemical compositions and enzyme activity changes occurring in yam (Dioscorea alata L.) tubers during growth
    Huang, Chien-Chun
    Chiang, Po-Yuan
    Chen, Yu-Yuan
    Wang, Chlun-C. R.
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2007, 40 (09) : 1498 - 1506
  • [5] Application of near infrared reflectance spectroscopy for the evaluation of yam (Dioscorea alata) germplasm and breeding lines
    Lebot, Vincent
    Malapa, Roger
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2013, 93 (07) : 1788 - 1797
  • [6] Transciptome analysis reveals flavonoid biosynthesis regulation and simple sequence repeats in yam (Dioscorea alata L.) tubers
    Zhi-Gang Wu
    Wu Jiang
    Nitin Mantri
    Xiao-Qing Bao
    Song-Lin Chen
    Zheng-Ming Tao
    BMC Genomics, 16
  • [7] Transciptome analysis reveals flavonoid biosynthesis regulation and simple sequence repeats in yam (Dioscorea alata L.) tubers
    Wu, Zhi-Gang
    Jiang, Wu
    Mantri, Nitin
    Bao, Xiao-Qing
    Chen, Song-Lin
    Tao, Zheng-Ming
    BMC GENOMICS, 2015, 16
  • [8] Identification and validation of QTLs for tuber quality related traits in greater yam (Dioscorea alata L.)
    Adou Emmanuel Ehounou
    Fabien Cormier
    Erick Maledon
    Elie Nudol
    Hélène Vignes
    Marie Claire Gravillon
    Assanvo Simon Pierre N’guetta
    Pierre Mournet
    Hâna Chaïr
    Amani Michel Kouakou
    Gemma Arnau
    Scientific Reports, 12
  • [9] Identification and validation of QTLs for tuber quality related traits in greater yam (Dioscorea alata L.)
    Ehounou, Adou Emmanuel
    Cormier, Fabien
    Maledon, Erick
    Nudol, Elie
    Vignes, Helene
    Gravillon, Marie Claire
    N'guetta, Assanvo Simon Pierre
    Mournet, Pierre
    Chair, Hana
    Kouakou, Amani Michel
    Arnau, Gemma
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Morphological, SSR and ploidy analysis of water yam (Dioscorea alata L.) accessions for utilization of aerial tubers as planting materials
    Girma, Gezahegn
    Gedil, Melaku
    Spillane, Charles
    GENETIC RESOURCES AND CROP EVOLUTION, 2017, 64 (02) : 291 - 305