Generalized Levinson-Durbin sequences, binomial coefficients and autoregressive estimation

被引:5
|
作者
Shaman, Paul [1 ]
机构
[1] Univ Penn, Dept Stat, Philadelphia, PA 19104 USA
关键词
Binomial coefficients; Generalized Levinson-Durbin sequence; Least squares estimator; Levinson-Durbin sequence; Partial correlations; Yule-Walker estimator; TIME-SERIES; MAXIMUM-LIKELIHOOD; BIAS; PREDICTION;
D O I
10.1016/j.jmva.2010.01.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a discrete time second-order stationary Process, the Levinson-Durbin recursion is used to determine the coefficients of the best linear predictor of the observation at time k + 1, given k previous observations, best in the sense of minimizing the mean square error. The coefficients determined by the recursion define a Levinson-Durbin sequence. We also define a generalized Levinson-Durbin sequence and note that binomial coefficients form a special case of a generalized Levinson-Durbin sequence. All generalized Levinson-Durbin sequences are shown to obey summation formulas which generalize formulas satisfied by binomial coefficients. Levinson-Durbin sequences arise in the construction of several autoregressive model coefficient estimators. The least squares autoregressive estimator does not give rise to a Levinson-Durbin sequence, but least squares fixed point processes, which yield least squares estimates of the coefficients unbiased to order I/T, where T is the sample length, can be combined to construct a Levinson-Durbin sequence. By contrast, analogous fixed point processes arising from the Yule-Walker estimator do not combine to construct a Levinson-Durbin sequence, although the Yule-Walker estimator itself does determine a Levinson-Durbin sequence. The least squares and Yule-Walker fixed point processes are further studied when the mean of the process is a polynomial time trend that is estimated by least squares. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1263 / 1273
页数:11
相关论文
共 50 条
  • [31] Extensions of generalized binomial coefficients
    Ollerton, RL
    Shannon, AG
    APPLICATIONS OF FIBONACCI NUMBERS, VOL 9, 2004, : 187 - 199
  • [32] Complex generalized binomial coefficients
    Gupta, Arjun K.
    Nagar, Daya K.
    Caro, Francisco J.
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2006, 14 (02) : 143 - 156
  • [33] On the Unimodality of Convolutions of Sequences of Binomial Coefficients
    Brown, Tricia Muldoon
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (02)
  • [34] Sequences of binomial coefficients modulo prime
    Zyuz'kov, Valentin M.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2023, (84): : 14 - 22
  • [35] SEQUENCES OF BINOMIAL TYPE WITH POLYNOMIAL COEFFICIENTS
    NIEDERHAUSEN, H
    DISCRETE MATHEMATICS, 1984, 50 (2-3) : 271 - 284
  • [36] SOME GENERALIZED RISING BINOMIAL COEFFICIENTS
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2007, 13 (01) : 25 - 30
  • [37] SOME CONGRUENCES FOR GENERALIZED BINOMIAL COEFFICIENTS
    KIMBALL, WA
    WEBB, WA
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (03) : 1079 - 1085
  • [38] EXPONENTS OF PRIMES IN GENERALIZED BINOMIAL COEFFICIENTS
    HILLMAN, AP
    HOGGATT, VE
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1973, 262 : 375 - 380
  • [39] Generalized binomial coefficients for molecular species
    Auger, P
    Labelle, G
    Pierre, L
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) : 15 - 48
  • [40] SOME GENERALIZED RISING BINOMIAL COEFFICIENTS
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2007, 13 (04) : 1 - 6