On the Unimodality of Convolutions of Sequences of Binomial Coefficients

被引:0
|
作者
Brown, Tricia Muldoon [1 ]
机构
[1] Georgia Southern Univ, Dept Math Sci, 11935 Abercorn St, Savannah, GA 31419 USA
关键词
binomial coefficient; rank sequence; tree; unimodal; POSET; TREES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide necessary and sufficient conditions on the unimodality of a convolution of two sequences of binomial coefficients preceded by a finite number of ones. These convolution sequences arise as rank sequences of posets of vertex-induced subtrees for a particular class of trees. The number of such trees whose poset of vertex-induced subgraphs containing the root is not rank unimodal is determined for a fixed number of vertices i.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Unimodality of Certain Sequences Connected With Binomial Coefficients
    Belbachir, Hacene
    Bencherif, Farid
    Szalay, Laszlo
    [J]. JOURNAL OF INTEGER SEQUENCES, 2007, 10 (02)
  • [2] Multifold convolutions of binomial coefficients
    Li, Nadia N.
    Chu, Wenchang
    [J]. MATHEMATICAL COMMUNICATIONS, 2019, 24 (02) : 279 - 287
  • [3] Strict unimodality of q-binomial coefficients
    Pak, Igor
    Panova, Greta
    [J]. COMPTES RENDUS MATHEMATIQUE, 2013, 351 (11-12) : 415 - 418
  • [4] On Divisibility of Convolutions of Central Binomial Coefficients
    Sepanski, Mark R.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [5] ON THE UNIMODALITY OF HIGH CONVOLUTIONS
    BROCKETT, PL
    KEMPERMAN, JHB
    [J]. ANNALS OF PROBABILITY, 1982, 10 (01): : 270 - 277
  • [6] A combinatorial proof of strict unimodality for q-binomial coefficients
    Dhand, Vivek
    [J]. DISCRETE MATHEMATICS, 2014, 335 : 20 - 24
  • [7] Binomial coefficients and Lucas sequences
    Flammenkamp, A
    Luca, F
    [J]. JOURNAL OF NUMBER THEORY, 2002, 93 (02) : 246 - 284
  • [8] Sequences of binomial coefficients modulo prime
    Zyuz'kov, Valentin M.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2023, (84): : 14 - 22
  • [9] SEQUENCES OF BINOMIAL TYPE WITH POLYNOMIAL COEFFICIENTS
    NIEDERHAUSEN, H
    [J]. DISCRETE MATHEMATICS, 1984, 50 (2-3) : 271 - 284
  • [10] Explicit Expressions for Higher Order Binomial Convolutions of Numerical Sequences
    José A. Adell
    Alberto Lekuona
    [J]. Results in Mathematics, 2019, 74