Machine learning Lie structures & applications to physics

被引:12
|
作者
Chen, Heng-Yu [1 ]
He, Yang-Hui [2 ,3 ,4 ]
Lal, Shailesh [5 ]
Majumder, Suvajit [2 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[2] City Univ London, Dept Math, London EC1V 0HB, England
[3] Univ Oxford, Merton Coll, Oxford OX1 4JD, England
[4] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
[5] Univ Porto, Fac Ciencias, 687 Rua Campo Alegre, P-4169007 Porto, Portugal
关键词
D O I
10.1016/j.physletb.2021.136297
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Classical and exceptional Lie algebras and their representations are among the most important tools in the analysis of symmetry in physical systems. In this letter we show how the computation of tensor products and branching rules of irreducible representations is machine-learnable, and can achieve relative speed-ups of orders of magnitude in comparison to the non-ML algorithms. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Machine learning in physics: A short guide
    Rodrigues, Francisco A.
    EPL, 2023, 144 (02)
  • [42] Learning new physics from a machine
    D'Agnolo, Raffaele Tito
    Wulzer, Andrea
    PHYSICAL REVIEW D, 2019, 99 (01)
  • [43] Machine learning in experimental neutrino physics
    Poonthottathil, N.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024, : 2687 - 2698
  • [44] Quantum machine learning for chemistry and physics
    Sajjan, Manas
    Li, Junxu
    Selvarajan, Raja
    Sureshbabu, Shree Hari
    Kale, Sumit Suresh
    Gupta, Rishabh
    Singh, Vinit
    Kais, Sabre
    CHEMICAL SOCIETY REVIEWS, 2022, 51 (15) : 6475 - 6573
  • [45] The application of machine learning in solar physics
    Liu Hui
    Ji KaiFan
    Jin ZhenYu
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2019, 49 (10)
  • [46] APPLICATIONS OF MACHINE LEARNING
    SEGRE, AM
    IEEE EXPERT-INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1992, 7 (03): : 30 - 33
  • [47] APPLICATIONS OF MACHINE LEARNING
    MORIK, K
    LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1992, 599 : 9 - 13
  • [48] Machine learning applications
    Arndt, Natanael
    Molitor, Paul
    Usbeck, Ricardo
    IT-INFORMATION TECHNOLOGY, 2023, 65 (4-5): : 139 - 141
  • [49] Applications for Machine Learning
    Nahavandi, Saeid
    IEEE SYSTEMS MAN AND CYBERNETICS MAGAZINE, 2021, 7 (02): : 3 - 3
  • [50] Digital twin, physics-based model, and machine learning applied to damage detection in structures
    Ritto, T. G.
    Rochinha, F. A.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 155 (155)