Machine learning Lie structures & applications to physics

被引:12
|
作者
Chen, Heng-Yu [1 ]
He, Yang-Hui [2 ,3 ,4 ]
Lal, Shailesh [5 ]
Majumder, Suvajit [2 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[2] City Univ London, Dept Math, London EC1V 0HB, England
[3] Univ Oxford, Merton Coll, Oxford OX1 4JD, England
[4] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
[5] Univ Porto, Fac Ciencias, 687 Rua Campo Alegre, P-4169007 Porto, Portugal
关键词
D O I
10.1016/j.physletb.2021.136297
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Classical and exceptional Lie algebras and their representations are among the most important tools in the analysis of symmetry in physical systems. In this letter we show how the computation of tensor products and branching rules of irreducible representations is machine-learnable, and can achieve relative speed-ups of orders of magnitude in comparison to the non-ML algorithms. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Physics-informed machine learning and its structural integrity applications: state of the art
    Zhu, Shun-Peng
    Wang, Lanyi
    Luo, Changqi
    Correia, Jose A. F. O.
    De Jesus, Abilio M. P.
    Berto, Filippo
    Wang, Qingyuan Y.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2260):
  • [32] Discussing the spectrum of physics-enhanced machine learning: a survey on structural mechanics applications
    Haywood-Alexander, Marcus
    Liu, Wei
    Bacsa, Kiran
    Lai, Zhilu
    Chatzi, Eleni
    Data-Centric Engineering, 2024, 5
  • [33] Monotonic Gaussian Process for Physics-Constrained Machine Learning With Materials Science Applications
    Tran, Anh
    Maupin, Kathryn
    Rodgers, Theron
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2023, 23 (01)
  • [34] Physics-informed machine learning
    George Em Karniadakis
    Ioannis G. Kevrekidis
    Lu Lu
    Paris Perdikaris
    Sifan Wang
    Liu Yang
    Nature Reviews Physics, 2021, 3 : 422 - 440
  • [35] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [36] Machine learning and statistical physics: preface
    Agliari, Elena
    Barra, Adriano
    Sollich, Peter
    Zdeborova, Lenka
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [37] Machine learning for condensed matter physics
    Bedolla, Edwin
    Padierna, Luis Carlos
    Castaneda-Priego, Ramon
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (05)
  • [38] Machine learning meets chemical physics
    Ceriotti, Michele
    Clementi, Cecilia
    Anatole von Lilienfeld, O.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (16):
  • [39] MACHINE LEARNING meets QUANTUM PHYSICS
    Das Sarma, Sankar
    Deng, Dong-Ling
    Duan, Lu-Ming
    PHYSICS TODAY, 2019, 72 (03) : 48 - 54
  • [40] Colloquium: Machine learning in nuclear physics
    Boehnlein, Amber
    Diefenthaler, Markus
    Sato, Nobuo
    Schram, Malachi
    Ziegler, Veronique
    Fanelli, Cristiano
    Hjorth-Jensen, Morten
    Horn, Tanja
    Kuchera, Michelle P.
    Lee, Dean
    Nazarewicz, Witold
    Ostroumov, Peter
    Orginos, Kostas
    Poon, Alan
    Wang, Xin-Nian
    Scheinker, Alexander
    Smith, Michael S.
    Pang, Long-Gang
    REVIEWS OF MODERN PHYSICS, 2022, 94 (03)