Spatio-Temporal Koopman Decomposition

被引:29
|
作者
Le Clainche, Soledad [1 ]
Vega, Jose M. [1 ]
机构
[1] Univ Politecn Madrid, ETSI Aeronaut & Espacio, E-28040 Madrid, Spain
关键词
Koopman operator; Nonlinear dynamical systems; Spatio-temporal dynamics; Traveling waves; Quasiperiodic dynamics; Complex Ginzburg-Landau equation; Thermal convection in spherical shells; SINGULAR-VALUE DECOMPOSITION; DYNAMIC-MODE DECOMPOSITION; ROTATING SPHERICAL-SHELLS; SPECTRAL PROPERTIES; THERMAL-CONVECTION; SYSTEMS; FLOWS;
D O I
10.1007/s00332-018-9464-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a new purely data-driven method, called the spatio-temporal Koopman decomposition, to approximate spatio-temporal data as a linear combination of (possibly growing or decaying exponentially) standing or traveling waves. The method combines (i) either standard singular value decomposition (SVD) or higher-order SVD and (ii) either standard dynamic mode decomposition (DMD) or an extension of this method by the authors, called higher-order DMD. In particular, for periodic or quasiperiodic attractors, the method gives the spatio-temporal pattern as a superposition of standing and/or traveling waves, which are identified in an efficient and robust way. Such superposition may give the whole pattern as a modulated, periodic or quasiperiodic, standing or traveling wave. The method is illustrated in some simple toy-model dynamics, and its performance is tested in the identification of standing and traveling waves in the Ginzburg-Landau equation and of azimuthal waves in a rotating spherical shell with thermal convection.
引用
收藏
页码:1793 / 1842
页数:50
相关论文
共 50 条
  • [41] ON THE ANALYSIS OF A COMPROMISED ADDITIVE MANUFACTURING SYSTEM USING SPATIO-TEMPORAL DECOMPOSITION
    Prakash, Sakthi Kumar Arul
    Mahan, Tobias
    Williams, Glen
    McComb, Christopher
    Menold, Jessica
    Tucker, Conrad S.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 2B, 2020,
  • [42] Decomposition tree: a spatio-temporal indexing method for movement big data
    He, Zhenwen
    Wu, Chonglong
    Liu, Gang
    Zheng, Zufang
    Tian, Yiping
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2015, 18 (04): : 1481 - 1492
  • [43] Scalable spatio-temporal smoothing via hierarchical sparse Cholesky decomposition
    Jurek, Marcin
    Katzfuss, Matthias
    ENVIRONMETRICS, 2023, 34 (01)
  • [44] Detecting spatio-temporal modes in multivariate data by entropy field decomposition
    Frank, Lawrence R.
    Galinsky, Vitaly L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (39)
  • [45] An efficient spatio-temporal index for spatio-temporal query in wireless sensor networks
    Lee, Donhee
    Yoon, Kyoungro
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2017, 11 (10): : 4888 - 4908
  • [46] Segmentations of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 298 - 313
  • [47] A novel spatio-temporal decomposition of the EEG: derivation, validation and clinical application
    Jackson, C
    Sherratt, M
    CLINICAL NEUROPHYSIOLOGY, 2004, 115 (01) : 227 - 237
  • [48] IMPROVING DYNAMIC TEXTURE RECOGNITION BY USING A COLOR SPATIO-TEMPORAL DECOMPOSITION
    Mourya, Rahul
    Dubois, Sloven
    Alata, Olivier
    Tremeau, Alain
    2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
  • [49] Proper-orthogonal decomposition of spatio-temporal patterns in fluidized beds
    Cizmas, PG
    Palacios, A
    O'Brien, T
    Syamlal, M
    CHEMICAL ENGINEERING SCIENCE, 2003, 58 (19) : 4417 - 4427
  • [50] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Johan Lindström
    Adam A. Szpiro
    Paul D. Sampson
    Assaf P. Oron
    Mark Richards
    Tim V. Larson
    Lianne Sheppard
    Environmental and Ecological Statistics, 2014, 21 : 411 - 433