Life Cycle Assessment and Techno-Economic Assessment of Lithium Recovery from Geothermal Brine

被引:42
|
作者
Huang, Tai-Yuan [1 ]
Perez-Cardona, Jesus R. [1 ]
Zhao, Fu [1 ,2 ]
Sutherland, John W. [1 ]
Paranthaman, Mariappan Parans [3 ]
机构
[1] Purdue Univ, Environm & Ecol Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[3] Oak Ridge Natl Lab, Chem Sci Div, POB 2009, Oak Ridge, TN 37831 USA
关键词
lithium extraction; lithium-ion battery; LDH sorbent; forward osmosis; Li2CO3; production; LiOH production; LCA; TEA;
D O I
10.1021/acssuschemeng.0c08733
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-ion batteries (LIB) play an essential role in the electrification of the transportation sector, and battery demand for lithium compounds will see a significant increase in the coming decades. This has raised concerns on the supply of lithium, and as a result, technologies are being developed to process unconventional lithium sources. One promising technology is to extract lithium from geothermal brine using lithium-aluminum-layered double hydroxide chloride (LDH) sorbent and forward osmosis. A combined life cycle assessment (LCA) and techno-economic assessment (TEA) is conducted to evaluate the environmental and economic performance of this technology. It is assumed that the lithium extraction unit is an add-on to a 50 MW geothermal power plant located in California. The analysis is based on lab-scale experimental data and stoichiometry while considering the economy of scale for an industrial system. LCA results suggest that, compared with conventional LiOH and Li2CO3 production pathways, the new technology achieves 1-95% reduction in environmental impacts. Even higher reduction can be achieved for LiOH produced via electrolysis. This add-on unit for lithium extraction could achieve a payback period of less than 1 year and reach net present values of $454M and $315M and internal rates of return of 792 and 1130% for LiOH and Li2CO3 production pathways, respectively. The favorable environmental and economic performance suggests that LDH sorption coupled with forward osmosis has great potential to enable the domestic production of battery lithium compounds and that further development should be carried out.
引用
收藏
页码:6551 / 6560
页数:10
相关论文
共 50 条
  • [31] Integrated Biorefinery Design with Techno-Economic and Life Cycle Assessment Tools in Polyhydroxyalkanoates Processing
    Andhalkar, Vaibhav Vilas
    Foong, Shin Ying
    Kee, Seng Hon
    Lam, Su Shiung
    Chan, Yi Herng
    Djellabi, Ridha
    Bhubalan, Kesaven
    Medina, Francesc
    Constanti, Magdalena
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2023, 308 (11)
  • [32] Integration of techno-economic analysis and life cycle assessment for sustainable process design - A review
    Mahmud, Roksana
    Moni, Sheikh Moniruzzaman
    High, Karen
    Carbajales-Dale, Michael
    JOURNAL OF CLEANER PRODUCTION, 2021, 317
  • [33] Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation
    Bartling, Andrew W.
    Stone, Michael L.
    Hanes, Rebecca J.
    Bhatt, Arpit
    Zhang, Yimin
    Biddy, Mary J.
    Davis, Ryan
    Kruger, Jacob S.
    Thornburg, Nicholas E.
    Luterbacher, Jeremy S.
    Rinaldi, Roberto
    Samec, Joseph S. M.
    Sels, Bert F.
    Roman-Leshkov, Yuriy
    Beckham, Gregg T.
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (08) : 4147 - 4168
  • [34] Techno-economic and sensitivity analysis of shale gas development based on life cycle assessment
    Liang, Hong-Bin
    Zhang, Lie-Hui
    Zhao, Yu-Long
    He, Xiao
    Wu, Jian-Fa
    Zhang, Jing
    Yang, Jun
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2021, 95
  • [35] Techno-Economic Analysis and Life Cycle Assessment of Pineapple Leaves Utilization in Costa Rica
    Liao, Clara Yuqi
    Guan, Ysabel Jingyi
    Bustamante-Roman, Mauricio
    ENERGIES, 2022, 15 (16)
  • [36] An integrated techno-economic and life cycle environmental assessment of power-to-gas systems
    Parra, David
    Zhang, Xiaojin
    Bauer, Christian
    Patel, Martin K.
    APPLIED ENERGY, 2017, 193 : 440 - 454
  • [37] Sustainability of carbon delivery to an algal biorefinery: A techno-economic and life-cycle assessment
    Somers, Michael D.
    Quinn, Jason C.
    JOURNAL OF CO2 UTILIZATION, 2019, 30 (193-204) : 193 - 204
  • [38] Techno-economic and life cycle assessment of an integrated hydrothermal carbonization system for sewage sludge
    Medina-Martos, Enrique
    Istrate, Ioan-Robert
    Villamil, John A.
    Galvez-Martos, Jose-Luis
    Dufour, Javier
    Mohedano, Angel F.
    JOURNAL OF CLEANER PRODUCTION, 2020, 277
  • [39] Microalgae biofuels: A comparative study on techno-economic analysis & life-cycle assessment
    Dutta, Smritikana
    Neto, Fernando
    Coelho, Margarida C.
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2016, 20 : 44 - 52
  • [40] Circularizing PET-G Multimaterials: Life Cycle Assessment and Techno-Economic Analysis
    Huang, Peng
    Ahamed, Ashiq
    Sun, Ruitao
    De Hoe, Guilhem X.
    Pitcher, Joe
    Mushing, Alan
    Lourenco, Fernando
    Shaver, Michael P.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (42) : 15328 - 15337