Realization of quantum cascade laser operating at room temperature

被引:0
|
作者
Li, CM [1 ]
Liu, FQ [1 ]
Jin, P [1 ]
Wang, ZG [1 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, Beijing 100083, Peoples R China
关键词
crystal structure; lattice-mismatch; microsctucture; radiation; X-ray diffraction; molecular beam epitaxy; infrared devices; quantum cascade laser;
D O I
10.1016/S0022-0248(02)02351-5
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
X-ray diffraction, as an effective probe and simple method, is used to ascertain the precise control of the epilayer thickness and composition. Intersubband absorption from the whole structure of the QC laser is used to monitor the wavelength of the QC laser and the material quality. Path for growth of high-quality InP-based InGaAs/InAlAs quantum cascade laser material is realized. The absorption between two quantized energy levels is achieved at similar to4.7 mum. Room temperature laser action is achieved at lambda approximate to 5.1 - 5.2 mum. For some devices, if the peak output power is kept at 2 mW, quasi-continuous wave operation at room temperature can persist for more than I It. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:285 / 289
页数:5
相关论文
共 50 条
  • [1] Injectorless quantum cascade laser operating in continuous wave above room temperature
    Katz, S.
    Vizbaras, A.
    Boehm, G.
    Amann, M-C
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2009, 24 (12)
  • [2] Facet temperature distribution of a room temperature continuous-wave operating quantum cascade laser
    Hu, Yongzheng
    Wang, Lijun
    Zhang, Jinchuan
    Li, Lu
    Liu, Junqi
    Liu, Fengqi
    Wang, Zhanguo
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (32)
  • [3] 8 μm strain-compensated quantum cascade laser operating at room temperature
    Guo, Y
    Liu, FQ
    Liu, JQ
    Li, CM
    Wang, ZG
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (08) : 844 - 846
  • [4] High power quantum cascade lasers operating at room temperature
    Razeghi, M
    Slivken, S
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 42 : S637 - S641
  • [5] Room temperature quantum cascade detector operating at 4.3 μm
    王雪娇
    刘俊岐
    翟慎强
    刘峰奇
    王占国
    [J]. Journal of Semiconductors, 2014, (10) : 70 - 73
  • [6] Room temperature quantum cascade detector operating at 4.3 μm
    王雪娇
    刘俊岐
    翟慎强
    刘峰奇
    王占国
    [J]. Journal of Semiconductors., 2014, 35 (10) - 73
  • [7] Room temperature, monolithic quantum cascade laser sources operating from 1.1 to 1.5 THz
    Fujita, Kazuue
    Hayashi, Shohei
    Hitaka, Masahiro
    Ito, Akio
    Dougakiuchi, Tatsuo
    Dong, Wei
    Fujiwara, Hiroyasu
    [J]. INFRARED, MILLIMETER-WAVE, AND TERAHERTZ TECHNOLOGIES VI, 2019, 11196
  • [8] Room-temperature InAs/AlSb quantum-cascade laser operating at 8.9μm
    Ohtani, K.
    Fujita, K.
    Ohno, H.
    [J]. ELECTRONICS LETTERS, 2007, 43 (09) : 520 - 522
  • [9] Influence of Operating Conditions on Quantum Cascade Laser Temperature
    Pierscinski, Kamil
    Pierscinska, Dorota
    Kosiel, Kamil
    Szerling, Anna
    Bugajski, Maciej
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (06) : 630 - 634
  • [10] Influence of Operating Conditions on Quantum Cascade Laser Temperature
    Kamil Pierściński
    Dorota Pierścińska
    Kamil Kosiel
    Anna Szerling
    Maciej Bugajski
    [J]. Journal of Electronic Materials, 2010, 39 : 630 - 634