Identification of noisy AR systems using damped sinusoidal model of autocorrelation function

被引:14
|
作者
Hasan, MK [1 ]
Fattah, SA [1 ]
Khan, MR [1 ]
机构
[1] Bangladesh Univ Engn & Technol, Dept Elect & Elect Engn, Dhaka 1000, Bangladesh
关键词
aautoregressive (AR) parameter estimation; damped sinusoidal modeling; low signal-to-noise ratio (SNR);
D O I
10.1109/LSP.2003.811590
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a novel method for minimumphase autoregressive (AR) system identification at a very low SNR using damped sinusoidal model representation of the autocorrelation function of the noise-free AR signal with guaranteed stability. The new model parameters are estimated solely from the given noisy observations. Then AR parameters are obtained directly from the estimates of the damped sinusoidal model parameters. The simulation results show that the proposed method can estimate the AR system parameters with high accuracy even at an SNR as low as -5 dB.
引用
收藏
页码:157 / 160
页数:4
相关论文
共 50 条
  • [41] On the use of system identification for accurate parametric modeling of nonlinear systems using noisy measurements
    Vandersteen, G
    Rolain, Y
    Schoukens, J
    Pintelon, R
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1996, 45 (02) : 605 - 609
  • [42] On the possible identification of defects using the autocorrelation function approach in double Doppler broadening of annihilation radiation spectroscopy
    Beling, CD
    LiMing, W
    Shan, YY
    Cheung, SH
    Fung, S
    Panda, BK
    Seitsonen, AP
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (46) : 10475 - 10492
  • [43] LTV system identification using the time-varying autocorrelation function and application to audio signal discrimination
    Al-Shoshan, AI
    [J]. 2002 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I AND II, 2002, : 239 - 242
  • [44] Nonlinear identification of complex systems using radial basis function networks and model order reduction
    Wiegand, C.
    Hedayat, C.
    John, W.
    Radic-Weissenfeld, Lj.
    Hilleringmann, U.
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY: WORKSHOP AND TUTORIAL NOTES, VOLS 1-3, 2007, : 737 - +
  • [45] Parameter Identification of Delayed Under-Damped Systems Using On-Line Relay Autotuning
    Ghorai, Prasenjit
    Majhi, Somanath
    Kasi, Venkata Ramana
    Pandey, Saurabh
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (07) : 1197 - 1201
  • [46] A PREDICTIVE DEMAND MODEL FOR SYSTEMS PLANNING, USING NOISY REALIZATION-THEORY
    KHER, LK
    SOROOSHIAN, S
    [J]. AUTOMATICA, 1988, 24 (05) : 671 - 676
  • [47] Identification of nonlinear systems using NARMAX model
    Rahrooh, Alireza
    Shepard, Scott
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1198 - E1202
  • [48] Handling noisy data in sparse model identification using subsampling and co-teaching
    Abdullah, Fahim
    Wu, Zhe
    Christofides, Panagiotis D.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2022, 157
  • [49] Online identification of a ship maneuvering model using a fast noisy input Gaussian process
    Xue, Yifan
    Chen, Gang
    Li, Zhitong
    Xue, Gang
    Wang, Wei
    Liu, Yanjun
    [J]. OCEAN ENGINEERING, 2022, 250
  • [50] Model identification and error covariance matrix estimation from noisy data using PCA
    Narasimhan, Shankar
    Shah, Sirish L.
    [J]. CONTROL ENGINEERING PRACTICE, 2008, 16 (01) : 146 - 155