Model identification and error covariance matrix estimation from noisy data using PCA

被引:93
|
作者
Narasimhan, Shankar [1 ]
Shah, Sirish L. [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PCA; model identification; measurement errors; data scaling;
D O I
10.1016/j.conengprac.2007.04.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Principal components analysis (PCA) is increasingly being used for reducing the dimensionality of multivariate data, process monitoring. model identification, and fault diagnosis. However, in the mode that PCA is currently used, it can be statistically justified only if measurement errors in different variables are assumed to be i.i.d. In this paper, an iterative algorithm for model identification using PCA is developed for the case when measurement errors in different variables are unequal and are correlated. The proposed approach not only gives accurate estimates of both the model and error covariance matrix, but also provides answers to the two important issues of data scaling and model order determination. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:146 / 155
页数:10
相关论文
共 50 条
  • [1] Error Covariance Matrix Estimation of Noisy and Dynamically Coupled Time Series
    Eugenia Mera, Maria
    Moran, Manuel
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2013, 150 (02) : 375 - 397
  • [2] Error Covariance Matrix Estimation of Noisy and Dynamically Coupled Time Series
    Maria Eugenia Mera
    Manuel Morán
    [J]. Journal of Statistical Physics, 2013, 150 : 375 - 397
  • [3] Error covariance matrix estimation using ridge estimator
    Luo, June
    Kulasekera, K. B.
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (01) : 257 - 264
  • [4] Robust Estimation of the Covariance Matrix From Data With Outliers
    Stoica, Petre
    Babu, Prabhu
    Varshney, Piyush
    [J]. IEEE Open Journal of Signal Processing, 2024, 5 : 1061 - 1072
  • [5] MEG beamforming using Bayesian PCA for adaptive data covariance matrix regularization
    Woolrich, Mark
    Hunt, Laurence
    Groves, Adrian
    Barnes, Gareth
    [J]. NEUROIMAGE, 2011, 57 (04) : 1466 - 1479
  • [6] Dimension Estimation in Noisy PCA With SURE and Random Matrix Theory
    Ulfarsson, Magnus O.
    Solo, Victor
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (12) : 5804 - 5816
  • [7] A Factor-Based Estimation of Integrated Covariance Matrix With Noisy High-Frequency Data
    Sun, Yucheng
    Xu, Wen
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (02) : 770 - 784
  • [8] Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions
    Ledoit, Olivier
    Wolf, Michael
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 139 : 360 - 384
  • [9] Noise covariance matrix estimation with subspace model identification for Kalman filtering
    Mussot, Vincent
    Mercere, Guillaume
    Dairay, Thibault
    Arvis, Vincent
    Vayssettes, Jeremy
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2021, 35 (04) : 591 - 611
  • [10] Ridge estimation of covariance matrix from data in two classes
    Zhou, Yi
    Zhang, Bin
    [J]. APPLICATIONS OF MATHEMATICS, 2024, 69 (02) : 169 - 184