Error covariance matrix estimation using ridge estimator

被引:2
|
作者
Luo, June [1 ]
Kulasekera, K. B. [2 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Univ Louisville, Dept Bioinformat & Biostat, Louisville, KY 40202 USA
关键词
High dimension; Error covariance matrix; Ridge estimation; Asymptotic property; MODELS;
D O I
10.1016/j.spl.2012.09.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers sparse covariance matrix estimation of high dimension. In contrast to the existing methods which are based on the residual estimation from least squares estimator, we utilize residuals from ridge estimator with the adaptive thresholding technique to estimate the error covariance matrix in high dimensional factor model. By obtaining the explicit convergence rates of the ridge estimator under regularity conditions, we formulated our thresholding estimator of the true covariance matrix. Our thresholding estimator can be applied to more scenarios and is shown to have comparable rate of convergence to Fan et al. (2011). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 50 条