Pattern formation in a reaction-diffusion system of Fitzhugh-Nagumo type before the onset of subcritical Turing bifurcation

被引:16
|
作者
Kuznetsov, Maxim [1 ]
Kolobov, Andrey [1 ]
Polezhaev, Andrey [1 ]
机构
[1] Russian Acad Sci, PN Lebedev Phys Inst, 53 Leninskiy Prospekt, Moscow, Russia
关键词
COMPLEX PATTERNS; SPIRAL WAVES; DYNAMICS; MODEL; PROPAGATION; SOLITONS;
D O I
10.1103/PhysRevE.95.052208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate numerically the behavior of a two-component reaction-diffusion system of Fitzhugh-Nagumo type before the onset of subcritical Turing bifurcation in response to local rigid perturbation. In a large region of parameters, the initial perturbation evolves into a localized structure. In a part of that region, closer to the bifurcation line, this structure turns out to be unstable and covers all the available space over the course of time in a process of self-completion. Depending on the parameter values in two-dimensional (2D) space, this process happens either through generation and evolution of new peaks on oscillatory tails of the initial pattern, or through the elongation, deformation, and rupture of initial structure, leading to space-filling nonbranching snakelike patterns. Transient regimes are also possible. Comparison of these results with 1D simulations shows that the prebifurcation region of parameters where the self-completion process is observed is much larger in the 2D case.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] RIGOROUS DERIVATION OF THE NONLOCAL REACTION-DIFFUSION FITZHUGH-NAGUMO SYSTEM
    Crevat, Joachim
    Faye, Gregory
    Filbet, Francis
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (01) : 346 - 373
  • [2] Turing Bifurcation and Pattern Formation of Stochastic Reaction-Diffusion System
    Zheng, Qianiqian
    Wang, Zhijie
    Shen, Jianwei
    Iqbal, Hussain Muhammad Ather
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [3] Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo type
    Ambrosio, B.
    Aziz-Alaoui, M. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (05) : 934 - 943
  • [4] Patterns of interaction of coupled reaction-diffusion systems of the FitzHugh-Nagumo type
    Zhang, Chunrui
    Ke, Ai
    Zheng, Baodong
    NONLINEAR DYNAMICS, 2019, 97 (02) : 1451 - 1476
  • [5] Analysis of a nonlinear reaction-diffusion system of the Fitzhugh-Nagumo type with Robin boundary conditions
    Al-Juaifri, Ghassan A.
    Harfash, Akil J.
    RICERCHE DI MATEMATICA, 2023, 72 (01) : 335 - 357
  • [6] QUALITATIVE ANALYSIS OF CERTAIN REACTION-DIFFUSION SYSTEMS OF THE FITZHUGH-NAGUMO TYPE
    Ambrisio, B.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2023, 12 (06): : 1507 - 1526
  • [7] THE SUB-SUPERSOLUTION METHOD FOR THE FITZHUGH-NAGUMO TYPE REACTION-DIFFUSION SYSTEM WITH HETEROGENEITY
    Kajiwara, Takashi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (05) : 2441 - 2465
  • [8] Analysis of a nonlinear reaction-diffusion system of the Fitzhugh-Nagumo type with Robin boundary conditions
    Ghassan A. Al-Juaifri
    Akil J. Harfash
    Ricerche di Matematica, 2023, 72 : 335 - 357
  • [9] Pattern formation in the Fitzhugh-Nagumo neuron with diffusion relaxation
    Tah, Forwah Amstrong
    Tabi, Conrad Bertrand
    Kofane, Timoleon Crepin
    CHAOS SOLITONS & FRACTALS, 2021, 147
  • [10] GLOBAL ATTRACTOR OF COMPLEX NETWORKS OF REACTION-DIFFUSION SYSTEMS OF FITZHUGH-NAGUMO TYPE
    Ambrosio, B.
    Aziz-Alaoui, M. A.
    Phan, V. L. E.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3787 - 3797