Pattern formation in a reaction-diffusion system of Fitzhugh-Nagumo type before the onset of subcritical Turing bifurcation

被引:16
|
作者
Kuznetsov, Maxim [1 ]
Kolobov, Andrey [1 ]
Polezhaev, Andrey [1 ]
机构
[1] Russian Acad Sci, PN Lebedev Phys Inst, 53 Leninskiy Prospekt, Moscow, Russia
关键词
COMPLEX PATTERNS; SPIRAL WAVES; DYNAMICS; MODEL; PROPAGATION; SOLITONS;
D O I
10.1103/PhysRevE.95.052208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate numerically the behavior of a two-component reaction-diffusion system of Fitzhugh-Nagumo type before the onset of subcritical Turing bifurcation in response to local rigid perturbation. In a large region of parameters, the initial perturbation evolves into a localized structure. In a part of that region, closer to the bifurcation line, this structure turns out to be unstable and covers all the available space over the course of time in a process of self-completion. Depending on the parameter values in two-dimensional (2D) space, this process happens either through generation and evolution of new peaks on oscillatory tails of the initial pattern, or through the elongation, deformation, and rupture of initial structure, leading to space-filling nonbranching snakelike patterns. Transient regimes are also possible. Comparison of these results with 1D simulations shows that the prebifurcation region of parameters where the self-completion process is observed is much larger in the 2D case.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Turing instability and pattern formation of neural networks with reaction-diffusion terms
    Zhao, Hongyong
    Huang, Xuanxuan
    Zhang, Xuebing
    NONLINEAR DYNAMICS, 2014, 76 (01) : 115 - 124
  • [42] Pattern formations with Turing and Hopf oscillating pattern in a discrete reaction-diffusion system
    Lee, IH
    Cho, UI
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2000, 21 (12) : 1213 - 1216
  • [43] Turing pattern amplitude equation for a model glycolytic reaction-diffusion system
    Dutt, A. K.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 48 (04) : 841 - 855
  • [44] Turing pattern amplitude equation for a model glycolytic reaction-diffusion system
    A. K. Dutt
    Journal of Mathematical Chemistry, 2010, 48 : 841 - 855
  • [45] Pattern formation in a fractional reaction-diffusion system
    Gafiychuk, V. V.
    Datsko, B. Yo.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (02) : 300 - 306
  • [46] PATTERN FORMATION OF BRUSSELATOR IN THE REACTION-DIFFUSION SYSTEM
    Ji, Yansu
    Shen, Jianwei
    Mao, Xiaochen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (3-4): : 434 - 459
  • [47] Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System
    Yuan Xu-Jin
    Shao Xin
    Liao Hui-Min
    Ouyang Qi
    CHINESE PHYSICS LETTERS, 2009, 26 (02)
  • [48] Turing-Hopf bifurcation in a general Selkov-Schnakenberg reaction-diffusion system
    Li, Yanqiu
    Zhou, Yibo
    CHAOS SOLITONS & FRACTALS, 2023, 171
  • [49] THE BIFURCATION ANALYSIS OF TURING PATTERN FORMATION INDUCED BY DELAY AND DIFFUSION IN THE SCHNAKENBERG SYSTEM
    Yi, Fengqi
    Gaffney, Eamonn A.
    Seirin-Lee, Sungrim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (02): : 647 - 668
  • [50] Stationary peaks in a multivariable reaction-diffusion system: foliated snaking due to subcritical Turing instability
    Knobloch, Edgar
    Yochelis, Arik
    IMA JOURNAL OF APPLIED MATHEMATICS, 2021, 86 (05) : 1066 - 1093